We report the results of a three-year precision medicine study that enrolled 1190 presumed healthy participants at a single research clinic. To enable a better assessment of disease risk and improve diagnosis, a precision health platform that integrates non-invasive functional measurements and clinical tests combined with whole genome sequencing (WGS) was developed. The platform included WGS, comprehensive quantitative non-contrast whole body (WB) and brain magnetic resonance imaging/angiography (MRI/MRA), computed tomography (CT) coronary artery calcium scoring, electrocardiogram, echocardiogram, continuous cardiac monitoring, clinical laboratory tests, and metabolomics. In our cohort, 24.3% had medically significant genetic findings (MSF) which may contribute to increased risk of disease. A total of 206 unique medically significant variants in 111 genes were identified, and forty individuals (3.4%) had more than one MSF. Phenotypic testing revealed: 34.2% of our cohort had a metabolomics profile suggestive of insulin resistance, 29.2% had elevated liver fat identified by MRI, 16.4% had clinically important cardiac structure or cardiac function abnormalities on cardiac MRI or ECHO, 8.8% had a high cardiovascular risk on CT coronary artery calcium scoring (Agatston calcium score > 400, Relative Risk of 7.2), 8.0% had arrhythmia found on continuous rhythm monitoring, 6.5% had cardiac conduction disorders found on EKG, 2% had previously undetected tumors detected by WB MRI, and 2.5% had previously undetected aneurysms detected by non-contrast MRI/MRA. Using family histories, personal histories, and test results, clinical and phenotypic findings were correlated with genomic findings in 130 study participants (63.1%) with high to moderate penetrance variants, suggesting the precision health platform improves the diagnostic process in asymptomatic individuals who were at risk. Cardiovascular and endocrine diseases achieved considerable clinical associations between MSFs and clinical phenotypes (89% and 72%, respectively). These findings demonstrate the value of integrating WGS and noninvasive clinical assessments for a rapid and integrated point-of-care clinical diagnosis of age-related diseases that contribute to premature mortality.