Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The work refers to the field of thermochemical processes of the biomass conversion into energy, in particular to the creation of gas-generator stoves operating on biomass for cooking. In view of the high energy efficiency and environmental friendliness gas-burning stoves significantly exceed the traditional direct combustion biomass kilns. The theoretical analysis of the processes of gasification and combustion of fuel flowing in the stove is considered. The stove is considered as a reversed microgasifier with an open top. Gasification is carried out in a vertical microgasifier of a dense layer of fuel with fuel ignition from above and air supply from below. The thermal processes taking place in the microgasifier can be divided into three stages: partial gasification of biofuel, complete gasification of the biochar obtained, direct combustion of the biochar. The pilot samples of a number of stoves with a reactor volume of 5.5 to 9.7 liters were made and pilot tests were carried out for the various types of biofuel (pellets from softwood, trimmed pine saw-timbers, wood chips from hardwood, briquettes from straw, sunflower husks, buckwheat husks). As a result of the tests it was found that the efficiency of the stoves is about 30% which is approximately 3 times more than that of traditional direct combustion furnaces, and the average thermal power of the gas-generator stoves was 0.71–1.78 kW which corresponds to the thermal power of household stoves operating on natural gas. The fuel consumption and the specific burning rate of the fuel are determined by the air supply. For approximate calculations, you can take a fuel consumption of 1 kg / hour. The specific intensity of combustion for the tested fuels varied in the range 27.5–60.6 kg / (m2 · h). The use of the thermal insulation of the hull makes it possible not only to reduce significantly heat losses to the environment but also to avoid burns if the person touches the stove accidentally. The stoves have the following advantages: ecological compatibility; the economy; mobility. Prospective consumers of stoves are the residents of non-gasified areas, summer residents, tourists.
The work refers to the field of thermochemical processes of the biomass conversion into energy, in particular to the creation of gas-generator stoves operating on biomass for cooking. In view of the high energy efficiency and environmental friendliness gas-burning stoves significantly exceed the traditional direct combustion biomass kilns. The theoretical analysis of the processes of gasification and combustion of fuel flowing in the stove is considered. The stove is considered as a reversed microgasifier with an open top. Gasification is carried out in a vertical microgasifier of a dense layer of fuel with fuel ignition from above and air supply from below. The thermal processes taking place in the microgasifier can be divided into three stages: partial gasification of biofuel, complete gasification of the biochar obtained, direct combustion of the biochar. The pilot samples of a number of stoves with a reactor volume of 5.5 to 9.7 liters were made and pilot tests were carried out for the various types of biofuel (pellets from softwood, trimmed pine saw-timbers, wood chips from hardwood, briquettes from straw, sunflower husks, buckwheat husks). As a result of the tests it was found that the efficiency of the stoves is about 30% which is approximately 3 times more than that of traditional direct combustion furnaces, and the average thermal power of the gas-generator stoves was 0.71–1.78 kW which corresponds to the thermal power of household stoves operating on natural gas. The fuel consumption and the specific burning rate of the fuel are determined by the air supply. For approximate calculations, you can take a fuel consumption of 1 kg / hour. The specific intensity of combustion for the tested fuels varied in the range 27.5–60.6 kg / (m2 · h). The use of the thermal insulation of the hull makes it possible not only to reduce significantly heat losses to the environment but also to avoid burns if the person touches the stove accidentally. The stoves have the following advantages: ecological compatibility; the economy; mobility. Prospective consumers of stoves are the residents of non-gasified areas, summer residents, tourists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.