2022
DOI: 10.1002/mma.8200
|View full text |Cite
|
Sign up to set email alerts
|

Results on approximate controllability of fractional stochastic Sobolev‐type Volterra–Fredholm integro‐differential equation of order 1 < r < 2

Abstract: The main motivation of our conversation is the approximate controllability of fractional stochastic Sobolev‐type Volterra–Fredholm integro‐differential equation of order 1 < r < 2. Using principles and ideas from stochastic analysis, the theory of cosine family, fractional calculus, and Banach fixed point techniques, the key findings are established. We begin by emphasizing the existence of mild solutions and then demonstrate the approximate controllability of the fractional stochastic control equation. We the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
12
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
8

Relationship

2
6

Authors

Journals

citations
Cited by 17 publications
(13 citation statements)
references
References 59 publications
0
12
0
1
Order By: Relevance
“…r(t) is the same Markov chain as that in Examples 1 and 2. For i ∈ S, z 1 , z 2 , z 3 ∈ R, set F 1 (z 1 , z 2 , z 3 , t, 1) = −2.4z 1 + 5e −0.3t z 2 ; G 1 (z 1 , z 2 , z2, t, 1) = 0.2e −0.3t z 3 ; F 2 (z 1 , z 2 , z 3 , t, 1) = −z 1 + 3.9e −0.3t z 2 ; G 1 (z 1 , z 2 , z, t, 1) = 0.06e −0.3t z 3 ; F 1 (z 1 , z 2 , z 3 , t, 2) = −2.5z 1 + 1.6e −0.3t z 2 − 0.3e −0.3t z 3 ; G 1 (z 1 , z 2 , z, t, 2) = 1.58z 1 + 0.1e −0.3t z 3 ; F 2 (z 1 , z 2 , z 3 , t, 2) = −3z 1 + 0.85e −0.3t z 2 − 0.5e −0.3t z 3 ; G 2 (z 1 , z 2 , z, t, 2) = 2.7z 1 + 0.3e −0.3t z 3 ; F 1 (z 1 , z 2 , z 3 , t, 3) = −5z 3 1 − 6z 1 − 0.6912e −0.6t z 1 z 2 2 − 0.05e −0.9t z 3 2 ; G 1 (z 1 , z 2 , z, t, 3) = 0.5e −0.6t z 2 3 ; F 2 (z 1 , z 2 , z 3 , t, 3) = −1.7z 3 1 − 5z 1 − 0.7e −0.6t z 1 z 2 2 − 0.2e −0.9t z 3 2 ; G 2 (z 1 , z 2 , z, t, 3) = 1.32e −0.6t z 2 3 .…”
Section: Now the Assumptions (Aunclassified
See 1 more Smart Citation
“…r(t) is the same Markov chain as that in Examples 1 and 2. For i ∈ S, z 1 , z 2 , z 3 ∈ R, set F 1 (z 1 , z 2 , z 3 , t, 1) = −2.4z 1 + 5e −0.3t z 2 ; G 1 (z 1 , z 2 , z2, t, 1) = 0.2e −0.3t z 3 ; F 2 (z 1 , z 2 , z 3 , t, 1) = −z 1 + 3.9e −0.3t z 2 ; G 1 (z 1 , z 2 , z, t, 1) = 0.06e −0.3t z 3 ; F 1 (z 1 , z 2 , z 3 , t, 2) = −2.5z 1 + 1.6e −0.3t z 2 − 0.3e −0.3t z 3 ; G 1 (z 1 , z 2 , z, t, 2) = 1.58z 1 + 0.1e −0.3t z 3 ; F 2 (z 1 , z 2 , z 3 , t, 2) = −3z 1 + 0.85e −0.3t z 2 − 0.5e −0.3t z 3 ; G 2 (z 1 , z 2 , z, t, 2) = 2.7z 1 + 0.3e −0.3t z 3 ; F 1 (z 1 , z 2 , z 3 , t, 3) = −5z 3 1 − 6z 1 − 0.6912e −0.6t z 1 z 2 2 − 0.05e −0.9t z 3 2 ; G 1 (z 1 , z 2 , z, t, 3) = 0.5e −0.6t z 2 3 ; F 2 (z 1 , z 2 , z 3 , t, 3) = −1.7z 3 1 − 5z 1 − 0.7e −0.6t z 1 z 2 2 − 0.2e −0.9t z 3 2 ; G 2 (z 1 , z 2 , z, t, 3) = 1.32e −0.6t z 2 3 .…”
Section: Now the Assumptions (Aunclassified
“…In the paper [2], the authors dealt with the complete controllability of a semi-linear stochastic system with delay under the assumption that the corresponding linear system is completely controllable. The paper [3] investigated the approximate controllability of fractional stochastic Sobolev-type Volterra-Fredholm integrodifferential equation of order 1 < r < 2. The paper [4] studied the time fractional system in the Caputo sense of fluid-conveying single-walled carbon nanotubes (SWCNT).…”
Section: Introductionmentioning
confidence: 99%
“…Therefore, it is important to investigate the problem of approximate controllability of nonlinear systems. Approximate controllability of nonlinear stochastic differential and integrodifferential systems with and without delay in infinite-dimensional spaces has been extensively studied (see [1,2,12,17,30,41,47] for example). Recently, Muthukumar and Rajivganthi in [41] proved the approximate controllability of control systems governed by a class of impulsive neutral stochastic functional differential systems with state-dependent delay in Hilbert spaces.…”
Section: Introductionmentioning
confidence: 99%
“…The controllability of various deterministic and stochastic control systems has been investigated in many works (see [1][2][3][4][5][6][7][8][9]). It should be emphasized that there are many different notions of controllability for fractiona-evolution systems-for example, approximate controllability, complete controllability, null controllability, and so on.…”
Section: Introductionmentioning
confidence: 99%
“…where D h, 0+ is the Hilfer fractional derivative, 0 ≤ h ≤ 1, 1 2 < < 1, and is the infinitesimal generator of a compact semigroup {ℵ(ς), ς ≥ 0} in Hilbert space Λ, where sup ς∈T ℵ(ς) ≤ Π, Π > 1.…”
Section: Introductionmentioning
confidence: 99%