The glutamatergic system plays an important role in mediating neurobehavioral effects of ethanol. Metabotropic glutamate receptors subtype 5 (mGluR5) are modulators of glutamatergic neurotransmission and are abundant in brain regions known to be involved in ethanol self-administration. Here, we studied the effects of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a highly potent, noncompetitive mGlu5 receptor antagonist, on voluntary ethanol consumption and relapse behavior. For this purpose, we used two models for the measurement of relapse behavior: (i) reinstatement of ethanol-seeking behavior by drug-associated cues and (ii) the alcohol deprivation effect in long-term ethanol-consuming rats. In the first set of experiments, rats were trained to lever press for ethanol in the presence of a distinct set of cues. After extinction, the animals were exposed to the respective cues that initiated reinstatement of responding. A response-contingent ethanol prime further enhanced responding compared to the conditioned cues alone. Under these conditions, MPEP (0, 1, 3, and 10 mg/kg) attenuated ethanol seeking significantly and in a dose-related manner. However, at the highest dose, MPEP also decreased the number of inactive lever responses. In the second set of experiments, rats with 1 year of ethanol experience and repeated deprivation phases were used. A subchronic treatment with MPEP (twice daily; 0, 3, and 10 mg/kg) resulted in a significant and dose-dependent reduction of the alcohol deprivation effect (ADE). Although the same MPEP treatment regimen decreased baseline drinking, this effect was not as pronounced as on the ADE. These results show in two commonly used models of relapse to ethanol that pharmacological targeting of mGlu5 receptors may be a promising approach for the treatment of alcoholism.