PurposeTo compare the accuracy of Doppler optical coherence tomography (DOCT) and OCT angiography (OCTA) for measuring retinal blood vessel caliber at different flow rates.MethodsA research-grade 1060-nm OCT system with 3.5-μm axial resolution in retinal tissue and 92,000 A scan/s image acquisition rate was used in this study. DOCT and OCTA measurements were acquired both from a flow phantom and in vivo from retinal blood vessels in six male Brown Norway rats. The total retinal blood flow (TRBF) was modified from baseline to 70% and 20% of baseline by reducing the ocular perfusion pressure (OPP). The retinal blood vessel caliber (RBVC) was measured from OCTA and DOCT images. The caliber measurements were conducted by two separate graders using a custom MATLAB-based image processing algorithm.ResultsThe RBVC measured with OCTA and DOCT for normal blood flow rates were not significantly different (56.69 ± 12.17 and 57.17 ± 9.46 μm, P = 0.27, respectively). However, significant differences were detected when TRBF was reduced to 70% (55.69 ± 11.56 vs. 50.62 ± 8.85 μm, P < 0.01) and 20% (50.29 ± 9.29 vs. 44.88 ± 7.13 μm, P < 0.01) of baseline.ConclusionsReduced TRBF resulted in inaccuracy of the RBVC measurements with DOCT in both the phantom and animal study. This result suggests that OCTA is a more accurate tool for RBVC evaluation when applied to retinal diseases associated with reduced TRBF, such as glaucoma and diabetic retinopathy.Translational RelevanceResults from this study are directly applicable to clinical studies of retinal blood flow measured with OCTA and DOCT.