In this work, the edge-based smoothed finite element method (ES-FEM) is incorporated with the Bathe time integration scheme to solve the transient wave propagation problems. The edge-based gradient smoothing technique (GST) can properly soften the “overly soft” system matrices from the standard finite element approach; then, the spatial numerical dispersion error of the calculated solutions for wave problems can be significantly reduced. To effectively solve the transient wave propagation problems, the Bathe time integration scheme is employed to perform the involved time integration. Due to the appropriate “numerical dissipation effects” from the Bathe time integration method, the spurious oscillations in the relatively large wave numbers (high frequencies) can be effectively suppressed; then, the temporal numerical dispersion error in the calculated solutions can also be notably controlled. A number of supporting numerical examples are considered to examine the capabilities of the present approach. The numerical results show that ES-FEM works very well with the Bathe time integration technique, and much more numerical solutions can be reached for solving transient wave propagation problems compared to the standard FEM.