The small extracellular vesicles (sEV) accumulating in acute myeloid leukemia (AML) patients’ plasma are mixtures of vesicles produced by leukemic and non-malignant cells. sEV originating from leukemia blasts could serve as potential non-invasive biomarkers of AML response to therapy. To isolate blast-derived sEV from patients’ plasma, we developed a bioprinted microarray-based immunoassay using monoclonal antibodies (mAbs) specific for leukemia-associated antigens (LAAs) and mAbs specific for a mix of tetraspanins (CD9, CD63, and CD81). We determined the proportion of LAA+ sEV relative to total plasma sEV (the LAA+/total sEV ratio) in serially collected samples of newly diagnosed AML patients prior to, during, and after chemotherapy. At AML diagnosis, the LAA+/total sEV ratio was significantly higher in patients than in healthy donors (HDs). In patients who achieved complete remission (CR) after induction chemotherapy, the LAA+/total sEV ratios significantly decreased after each chemotherapy cycle to levels seen in HDs. In contrast, the LAA+/total sEV ratios in AML patients with persistent leukemia after therapy remained elevated during and after therapy, as did the percentage of leukemic blasts in these patients’ bone marrows. The LAA+/total sEV ratio emerges as a promising non-invasive biomarker of leukemia response to therapy.