A microporous silicoaluminophosphate with a novel topology type, STA-20, has been prepared via a dual templating method using hexamethylene bisdiazabicyclooctane (diDABCO-C6) and trimethylamine as co-templates. Its structure has been solved and 2 confirmed using a multi-technique approach that included the use of a hypothetical zeolite database to obtain a candidate starting structure, followed by scanning transmission electron microscopy with annular dark field imaging and Rietveld refinement. STA-20 is a member of the ABC-6 family of zeotype structures. The structure has trigonal symmetry, P-31c, with a = 13.15497(18) Å and c = 30.5833(4) Å in the calcined form. It has a 12-layer stacking sequence of 6-rings (6Rs), AABAABAACAAC(A), which contains single and double 6R units. As well as d6r, can and gme cages, STA-20 possesses the longest cage observed in an ordered ABC-6 material, giving a 3D-connected pore system limited by 8R windows. Models for the location of the templates within cages of the framework were obtained by combining elemental analysis, 13 C MAS NMR, computer modelling and Rietveld refinement.