The fatigue crack propagation behaviour of Q550E high-performance steel (HPS) is studied in this paper. Static tensile testing and fatigue crack propagation testing were carried out, and the results were compared with those of Q235. Finite element models were developed and verified against the experimental results. The impacts of the initial crack angle, crack depth ratio, stress ratio, thickness, and corrosion pitting on the fatigue crack propagation behaviour of the HPS were analysed. The results show that the fatigue life of Q550 was reduced by 18% due to the corrosion pitting, but it did not change the crack propagation path. When the stress intensity factor is higher than a certain value, the fatigue performance of Q235 is better than that of Q550E. The initial crack angle of 52.5ยฐ is the critical angle of the crack stress intensity factor. The steel tends to fracture as the crack depth ratio increases, and more attention should be paid to the effective crack length in engineering practice. An increasing stress ratio leads to a smaller stress intensity factor, and the thickness affects the stress intensity factor in the later stage. The crack stress intensity factor around the corrosion pits gradually decreases along the thickness direction, and the crack tips around the corrosion pits tend to reach the yield state initially, accelerating the fatigue fracture of the specimen and ultimately leading to a decrease in fatigue life.