“…chromatophores; mainly melanophores, iridophores, leucophores and xanthophores) are distributed in the hypo- and the epidermis in fish, and mutational or other analyses allowed for increased understanding in the complex mechanisms of pigment cell fates during development and their resulting distribution (Kelsh et al, 2004, 2009; Kimura et al, 2014; Eom, Bain, Patterson, Grout, & Parichy, 2015; Nüsslein-Völlard & Singh, 2017; Parichy & Spiewak, 2015; Singh & Nüsslein-Völlard, 2015; Salis et al, 2018; Volkening 2020). Studies now extend to other fish species (Maan & Sfec, 2013; Irion & Nüsslein-Völlard, 2019) and to a large array of eco-evolutionary questions regarding the involvement of genes or regulatory pathways in fish pigmentation, its epistatic and pleiotropic nature, its modularity and its control, sexually antagonist selection or its role in speciation as well as the impact of whole-genome duplication that promoted the diversification of pigment cell lineages (Hultman, Bahary, Zon, & Johnson, 2007; Miller et al, 2007; Braasch, Brunet, Volff, & Schartl, 2009; Roberts, Ser & Kocher, 2009; Albertson et al, 2014; Santos et al 2014; Ceinos, Guillot, Kelsh, Cerdá-Reveter, & Rotlland, 2015; Yong, Peichel, & McKinnon, 2015; Gu & Xia 2017; Kimura, Takehana, & Naruse, 2017; Roberts, Moore, & Kocher, 2017; Sefc et al, 2017; Lorin, Brunet, Laudet, & Volff, 2018; Kratochwil et al, 2018; Nagao et al, 2018; Cal et al, 2019; Lewis et al, 2019; Kon et al, 2020; Liang, Gerwin, Meyer, & Kratochwil, 2020). An increasing number of studies engaged fish research in high-throughput genomic approach of pigmentation variation (guppy: Tripathi et al, 2009; three-spine stickleback: Greenwood et al, 2011; Malek, Boughman, Dworkin, & Peichel, 2012; cichlids: O’Quin, Drilea, Conte, & Kocher, 2013; Henning, Jones, Franchini, & Meyer, 2013; Henning, Lee, Franchini, & Meyer, 2014; Albertson et al, 2014; Zhu et al, 2016; Roberts et al 2017; koi carp: Xu et al, 2014; arowana: Bian et al, 2016; goldfish: Kon et al, 2020).…”