Soil faunas account for 23% of known animal species and play a crucial role in ecosystem processes such as mineralizing nutrients, regulating microbial community composition, forming soil aggregates, and enhancing primary productivity. However, due to global climate change, population density, community composition, and distribution patterns of soil fauna vary. Understanding the responses of soil fauna to major environmental change facilitate the conservation of biodiversity. Therefore, a review work of recent researches for analysing the effects of key environmental factors on soil fauna, such as warming, drought, food quality, and soil physical-chemical properties was studied. For most species, warming may exert a positive effect on their abundance and population development, however, it can inhibit the survival and reproduction of hibernating species. Drought leads to low soil porosity and water holding capacity, which reduces soil fauna population and changes their community composition. Drought also can reduce the coverage of flora and alter microclimate of the soil surface, which in turn indirectly reduces fauna abundance. Climate warming and elevated atmospheric carbon dioxide can reduce litter quality, which will force soil fauna to change their dietary choices (from higher-quality foods to poor quality foods) and reduce reproduction for survival. However, it is still predicted that enhanced species richness of plant (or litter) mixtures will positively affect soil fauna diversity. Habitat loss caused by the deterioration of soil physical-chemical property is primary factor affecting soil fauna. We mainly discuss the threats of increased salinity (a major factor in arid land) to soil fauna and their potential responses to anthropogenic disturbance in saline soils. The increase in soil salinity can override other factors that favour habitat specialists, leading to negative effects on soil fauna. Moreover, we find that more studies are needed to explore the responses of soil fauna in saline soils to human activities. And the relationship of important ecological processes with soil fauna density, community structure, and diversity needs to be redefined.