Petroleum and Natural Gas still represent a considerable share in terms of energy consumption in the current global matrix, so that its exploration/exploitation is present in the market and driving activities in locations of specific complexities, as the ones along unconventional hydrocarbon resources from the Brazilian pre-salt. The daily cost of well drilling under harsh conditions can exceed US $1 million a day, turning any type of downtime or necessary maintenance during the activities to be very costly, moment in which processes optimization starts to be a key factor in costs reduction. Thus, new technologies and methods in terms of automating and optimizing the processes may be of great advantages, having its impact in total related project costs. In this context, the goal of this research is to allow a computation tool supporting achieving a more efficient drilling process, by means of drilling mechanics parameters choosiness aiming rate of penetration (ROP) maximization and mechanic specific energy (MSE) minimization. Conceptually, driven by the pre-operational drilling test curve trends, the proposed system allows it to be performed with less human influences and being updateable automatically, allowing more precision and time reduction by selecting optimum parame