The bromodomain-containing proteins BRD9 and BRD7 are part of the human SWI/SNF chromatin-remodeling complexes BAF and PBAF. To date, no selective inhibitor for BRD7/9 has been reported despite its potential value as a biological tool or as a lead for future therapeutics. The quinolone-fused lactam LP99 is now reported as the first potent and selective inhibitor of the BRD7 and BRD9 bromodomains. Development of LP99 from a fragment hit was expedited through balancing structure-based inhibitor design and biophysical characterization against tractable chemical synthesis: Complexity-building nitro-Mannich/lactamization cascade processes allowed for early structure–activity relationship studies whereas an enantioselective organocatalytic nitro-Mannich reaction enabled the synthesis of the lead scaffold in enantioenriched form and on scale. This epigenetic probe was shown to inhibit the association of BRD7 and BRD9 to acetylated histones in vitro and in cells. Moreover, LP99 was used to demonstrate that BRD7/9 plays a role in regulating pro-inflammatory cytokine secretion.
The bromodomain‐containing proteins BRD9 and BRD7 are part of the human SWI/SNF chromatin‐remodeling complexes BAF and PBAF. To date, no selective inhibitor for BRD7/9 has been reported despite its potential value as a biological tool or as a lead for future therapeutics. The quinolone‐fused lactam LP99 is now reported as the first potent and selective inhibitor of the BRD7 and BRD9 bromodomains. Development of LP99 from a fragment hit was expedited through balancing structure‐based inhibitor design and biophysical characterization against tractable chemical synthesis: Complexity‐building nitro‐Mannich/lactamization cascade processes allowed for early structure–activity relationship studies whereas an enantioselective organocatalytic nitro‐Mannich reaction enabled the synthesis of the lead scaffold in enantioenriched form and on scale. This epigenetic probe was shown to inhibit the association of BRD7 and BRD9 to acetylated histones in vitro and in cells. Moreover, LP99 was used to demonstrate that BRD7/9 plays a role in regulating pro‐inflammatory cytokine secretion.
The use of immobilized capillary enzyme reactors (ICERs) for online ligand screening has been adopted as a new technique for high-throughput screening (HTS). In this work, the selected target was the enzyme acetylcholinesterase (AChE), and the AChE-ICERs produced were used in a liquid chromatograph-tandem ion-trap mass spectrometer. The activity and kinetic parameters were evaluated by monitoring the choline's precursor ion (M + H)(+)m/z 104.0 and its ion fragment (C2H3OH) - (M + H)(+)m/z 60.0. The assay method was validated using the reference AChE inhibitors tacrine and galanthamine. Two new ligands, out of a library of 17 coumarin derivatives, were identified, and the half-maximal inhibitory concentration (IC50), inhibition constant (K(i)), and the inhibition mechanism were determined. A coumarin derivative with IC50 similar to tacrine was highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.