Reverse poly(butylene oxide)–poly(ethylene oxide)–poly(butylene oxide) block copolymers with lengthy hydrophilic blocks as efficient single and dual drug-loaded nanocarriers with synergistic toxic effects on cancer cells
“…13,14 The formation of such bridges is favoured when the hydrophobic core-forming block is smaller than the stabilizing corona segments. 15,16 If the hydrophilic block is too short, the conformational energy will not be favourable to the formation of loops. There must be a compromise between inter-chain interactions, increasing with the length of the hydrophilic block, and the formation of loops, also favored by longer chains.…”
Novel amphiphilic PVDF-based triblock copolymer (PVDF50-b-PEG136-b-PVDF50) is synthesized using RAFT polymerization and a one-pot thia-Michael addition. Self-assembly of this ABA copolymer resulted in formation of original crystalline structures.
“…13,14 The formation of such bridges is favoured when the hydrophobic core-forming block is smaller than the stabilizing corona segments. 15,16 If the hydrophilic block is too short, the conformational energy will not be favourable to the formation of loops. There must be a compromise between inter-chain interactions, increasing with the length of the hydrophilic block, and the formation of loops, also favored by longer chains.…”
Novel amphiphilic PVDF-based triblock copolymer (PVDF50-b-PEG136-b-PVDF50) is synthesized using RAFT polymerization and a one-pot thia-Michael addition. Self-assembly of this ABA copolymer resulted in formation of original crystalline structures.
“…10–30% and 13–18%, respectively, depending on the solution pH and the composition of the nanocarrier. This initial leakage from the particles is rather lower than that observed from different polymeric nanoparticles and micelles [62–64], nanogels [65] or solid lipid nanoparticles [66], and similar to that of many other anticancer drug-liposome [67, 68] and polymeric micelles and particles-based [14, 69, 70] formulations. However, it is worth recognising that nowadays some few different nanocarriers have designed that completely block the uncontrolled premature leakage of the cargo and allowing its complete release in the targeted site on-demand under controlled internal or external stimuli [24, 35, 71, 72].…”
Section: Resultsmentioning
confidence: 60%
“…65–70%). This larger toxic effect has been attributed to the targeting delivery of the nanocarrier to the cancerous cells and the synergistic effect provided by the released of the co-encapsulated drugs, as observed for some other formulations simultaneously encapsulating several chemodrugs as liposomes [68, 74], polymeric micelles and nanoparticles [8, 9, 14, 16], nanogels and hydrogels [75, 76], inorganic nanoparticles [18, 19], etc.…”
Section: Resultsmentioning
confidence: 99%
“…To achieve these goals, different types of nanovehicles containing at least two therapeutical compounds with different physicochemical and pharmacological properties have been designed. For example, polymeric-based NPs such as folic acid–modified poly(ethylene glycol)–poly(lactic acid- co -glycolic acid) (FA–PEG–PLGA) NPs were used to simultaneously deliver cisplatin (CDDP) and paclitaxel (PTX) for non-small cell lung cancer treatment [13]; poly(ethylene glycol)-block-poly( d,l -lactic acid) (PEG- b -PLA) micelles for the co-delivery of PTX and rapamycin (RAP) to endothelial cells (HUVEC) in order to avoid cell proliferation, tubule formation, migration and apoptosis induction [10]; poly(butylene oxide)–poly(ethylene oxide)–poly(butylene oxide) (BO n EO m BO n ) block copolymer micelles containing DTX and DOXO to achieve synergistic toxic effects against breast cancer cells [14]; liposomal formulations (some of them already in clinical trials) which combine cytarabine/daunorubicin (CPX-351) and irinotecan/loxuridine (CPX-1) for the treatment of acute myeloid leukemia and colorectal cancer, respectively [15]; chitosan–alginate NPs containing DOXO and vincristine (VCR) encapsulated into vitamin E d -α-tocopheryl polyethylene glycol 1000 succinate-modified PLGA NPs for chemotherapy of lung cancer, Hodgkin’s lymphoma, soft tissue sarcoma, and osteosarcoma [16]; calcium carbonate NPs loaded with drug resistance inhibitors such as celecoxib (CXB) and buthionine sulfoximine (BSO) to downregulate P-glycoprotein (P-gp) expression and depletion of glutathione (GSH) synthesis to inhibit reverse MDR [17]; GNR-based nanocarriers for the co-administration of DOXO and K-Ras targeted small interfering RNA (siRNA) for pancreas cancer therapy [18]; and mesoporous silica NPs (MSNPs) to deliver DOXO and Bcl-2-targeted siRNA to fight against multidrug resistant A2780/AD human ovarian cancer cells [19].…”
Background
Improving the water solubility of hydrophobic drugs, increasing their accumulation in tumor tissue and allowing their simultaneous action by different pathways are essential issues for a successful chemotherapeutic activity in cancer treatment. Considering potential clinical application in the future, it will be promising to achieve such purposes by developing new biocompatible hybrid nanocarriers with multimodal therapeutic activity.
Results
We designed and characterised a hybrid nanocarrier based on human serum albumin/chitosan nanoparticles (HSA/chitosan NPs) able to encapsulate free docetaxel (DTX) and doxorubicin-modified gold nanorods (DOXO-GNRs) to simultaneously exploit the complementary chemotherapeutic activities of both antineoplasic compounds together with the plasmonic optical properties of the embedded GNRs for plasmonic-based photothermal therapy (PPTT). DOXO was assembled onto GNR surfaces following a layer-by-layer (LbL) coating strategy, which allowed to partially control its release quasi-independently release regarding DTX under the use of near infrared (NIR)-light laser stimulation of GNRs. In vitro cytotoxicity experiments using triple negative breast MDA-MB-231 cancer cells showed that the developed dual drug encapsulation approach produces a strong synergistic toxic effect to tumoral cells compared to the administration of the combined free drugs; additionally, PPTT enhances the cytostatic efficacy allowing cell toxicities close to 90% after a single low irradiation dose and keeping apoptosis as the main cell death mechanism.
Conclusions
This work demonstrates that by means of a rational design, a single hybrid nanoconstruct can simultaneously supply complementary therapeutic strategies to treat tumors and, in particular, metastatic breast cancers with good results making use of its stimuli-responsiveness as well as its inherent physico-chemical properties.
“…Recent studies also highlight the increased cytocompatibility of PBO containing self-assemblies compared to nanoparticles made of more hydrophobic blocks, reinforcing its biomedical relevance. [45][46][47][48] The combination of PG as hydrophilic and PBO as hydrophobic block in amphiphilic block copolymers and their selfassembly will be advantageous for possible biomedical applications. In this work, we present an improved, microwave-based synthesis of PBO-b-PG diblock copolymers.…”
Improved synthesis and well controlled self-assembly of PBO-b-PG amphiphilic diblock copolymers led to homogenous phases of micelles, worms and vesicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.