Here we report the synthesis of PLGA/DOXO-core Au-branched shell nanostructures (BGNSHs) functionalized with a human serum albumin/indocyanine green/folic acid complex (HSA-ICG-FA) to configure a multifunctional nanotheranostic platform. First, branched gold nanoshells (BGNSHs) were obtained through a seeded-growth surfactant-less method. These BGNSHs were loaded during the synthetic process with the chemotherapeutic drug doxorubicin, a DNA intercalating agent and topoisomerase II inhibitior. In parallel, the fluorescent near-infrared (NIR) dye indocyanine green (ICG) was conjugated to the protein human serum albumin (HSA) by electrostatic and hydrophobic interactions. Subsequently, folic acid was covalently attached to the HSA-ICG complex. In this way, we created a protein complex with targeting specificity and fluorescent imaging capability. The resulting HSA-ICG-FA complex was adsorbed to the gold nanostructures surface (BGNSH-HSA-ICG-FA) in a straightforward incubation process thanks to the high affinity of HSA to gold surface. In this manner, BGNSH-HSA-ICG-FA platforms were featured with multifunctional abilities: the possibility of fluorescence imaging for diagnosis and therapy monitoring by exploiting the inherent fluorescence of the dye, and a multimodal therapy approach consisting of the simultaneous combination of chemotherapy, provided by the loaded drug, and the potential cytotoxic effect of photodynamic and photothermal therapies provided by the dye and the gold nanolayer of the hybrid structure, respectively, upon NIR light irradiation of suitable wavelength. The combination of this trimodal approach was observed to exert a synergistic effect on the cytotoxicity of tumoral cells in vitro. Furthermore, FA was proved to enhance the internalization of nanoplatform. The ability of the nanoplatforms as fluorescence imaging contrast agents was tested by preliminary analyzing their biodistribution in vivo in a tumor-bearing mice model.
Some of the most prevalent neurodegenerative diseases are characterized by the accumulation of amyloid fibrils in organs and tissues. Although the pathogenic role of these fibrils has not been completely established, increasing evidence suggests offpathway aggregation as a source of toxic/detoxicating deposits that still remains to be targeted. The present work is a step toward the development of off-pathway modulators using the same amyloid-specific dyes as those conventionally employed to screen amyloid inhibitors. We identified a series of kinetic signatures revealing the quantitative importance of off-pathway aggregation relative to amyloid fibrillization; these include nonlinear semilog plots of amyloid progress curves, highly variable end point signals, and half-life coordinates weakly influenced by concentration. Molecules that attenuate/intensify the magnitude of these signals are considered promising off-pathway inhibitors/promoters. An illustrative example shows that amyloid deposits of lysozyme are only the tip of an iceberg hiding a crowd of insoluble aggregates. Thoroughly validated using advanced microscopy techniques and complementary measurements of dynamic light scattering, CD, and soluble protein depletion, the new analytical tools are compatible with the high-throughput methods currently employed in drug discovery.
Here, the use of folic acid (FA)-functionalized, doxorubicin (DOXO)/superparamagnetic iron oxide nanoparticles (SPION)-loaded poly(lactic-co-glycolic acid) (PLGA)-Au porous shell nanoparticles (NPs) as potential nanoplatforms is reported for targeted multimodal chemo- and photothermal therapy combined with optical and magnetic resonance imaging in cancer. These polymeric-gold nanohybrids (PGNH) are produced by a seeded-growth method using chitosan as an electrostatic "glue" to attach Au seeds to DOXO/SPION-PLGA NPs. In order to determine their potential as theranostic nanoplatforms, their physicochemical properties, cellular uptake, and photothermal and chemotherapeutic efficiencies are tested in vitro using a human cervical cancer (HeLa) cell line. The present NPs show a near-infrared (NIR)-light-triggered release of cargo molecules under illumination and a great capacity to induce localized cell death in a well-focused region. The functionalization of the PGNH NPs with the targeting ligand FA improves their internalization efficiency and specificity. Furthermore, the possibility to guide the PGNH NPs to cancer cells by an external magnetic field is also proven in vitro, which additionally increases the cellular uptake and therapeutic efficiency.
This paper reports the development of a multimodal therapy nanoplatform based on gold nanostars (Au NS) as core particles. These NS were functionalized with the chemotherapeutic drug doxorubicin (DOXO), which was conjugated to the NS surface by means of a cleavable heterobifunctional cross-linker (sulfo-LC-SPDP) to allow its release under the action of reducing enzymes. To ensure a specific delivery of the chemotherapeutic drug, the nanoplatform was additionally functionalized with folic acid (FA) as targeting ligand and cellular uptake adjuvant. By synthetically modifying the plasmon band of Au NS to the near-infrared (NIR) region of the electromagnetic spectrum, the present nanoplatform was able to simultaneously combine the capability of photothermal therapy (PTT) through the conversion of absorbed light energy into localized heat and chemotherapy, enabling their monitoring by means of optical fluorescence imaging thanks to DOXO’s autofluorescence. Cellular uptake was observed to be enhanced when the Au NPs were decorated with the targeting ligand. In addition, the therapeutic efficiency of the nanoplatform tested in HeLa cells demonstrated the larger cytotoxicity efficiency of the combined therapy if compared to individual ones.
In this work, multifunctional nanocarriers consisting of poly(sodium-4-styrenesulfonate) (PSS)/doxorubicin (DOXO)/poly-l-lysine hydrobromide (PLL)/hyaluronic acid (HA)-coated and (PSS/DOXO/PLL)2/HA-coated gold nanorods were assembled by the layer-by-layer technique with the aims of coupling the plasmonic photothermal properties of the metal nanoparticles for plasmonic hyperthermia and the chemoaction of drug DOXO for potential intended combinatorial cancer therapeutics in the future as well as providing different strategies for the controlled and sustained release of the cargo drug molecules. To do that, DOXO could be successfully loaded onto the hybrid nanoconstructs through electrostatic interactions with high efficiencies of up to ca. 78.3 ± 6.9% for the first formed drug layer and 56 ± 13% for the second one, with a total efficiency for the whole system [(PSS/DOXO/PLL)2/HA-coated NRs] of ca. 65.7 ± 1.4%. Nanohybrid internalization was observed to be enhanced by the outer HA layer, which is able to target the CD44 receptors widely overexpressed in some types of cancers as lung, breast, or ovarian ones. Hence, these nanohybrid systems might be versatile nanoplatforms to simultaneously deliver sufficient heat for therapeutic plasmonic hyperthermia and the anticancer drug. Two controlled mechanisms were proposed to modulate the release of the chemodrug, one by means of the enzymatic degradable character of the PLL layer and another by the modulation of the interactions between the polymeric layers through the exploitation of the optical properties of the hybrid particles under near infrared (NIR) laser irradiation. The combination of this bimodal therapeutic approach exerted a synergistic cytotoxic effect on both HeLa and MDA-MB-231 cancer cells in vitro. Cell death mechanisms were also analyzed, elucidating that plasmonic photothermal therapy induces cell necrosis, whereas DOXO activates the cell apoptotic pathway. Therefore, the present NIR laser-induced targeted cancer thermo/chemotherapy represents a novel targeted anticancer strategy with easy control on demand and suitable therapeutic efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.