Tetrodotoxin (TTX) is a highly fatal marine biotoxin. Constantly increasing intoxications and the lack of specific antitoxic drugs in clinical applications highlight the need for further research into the toxic effects of TTX. Current reports on poisoning cases and the TTX toxicity mechanism suggest that the blocking of voltage-gated sodium channels (VGSCs) by TTX is probably reversible, but direct evidence of this is lacking, as far as we are aware. This study explored the acute toxic effects of TTX at sub-lethal doses via different routes, analyzing variations in muscle strength and TTX concentration in the blood in mice. We found that the loss of muscle strength in mice caused by TTX was dose-dependent and reversible, and the death time and muscle strength variations after oral gavage with TTX appeared to occur later and were more variable than those after intramuscular injection. In conclusion, we systematically compared the acute toxic effects of TTX for two different administration routes at sub-lethal doses, directly verifying the reversible reaction of TTX blocking VGSCs and speculating that averting a complete block of VGSCs by TTX could be an effective strategy for preventing death from TTX poisoning. This work may provide data for the diagnosis and treatment of TTX poisoning.