As new and better materials are implemented for organic electrochemical transistors (OECTs), it becomes increasingly important to adopt more economic and environmentally friendly synthesis pathways with respect to conventional transition-metal-catalyzed polymerizations. Herein, a series of novel n-type donoracceptor-conjugated polymers based on glycolated lactone and bis-isatin units are reported. All the polymers are synthesized via green and metal-free aldol polymerization. The strong electron-deficient lactone-building blocks provide low-lying lowest unoccupied molecular orbital (LUMO) and the rigid backbone needed for efficient electron mobility up to 0.07 cm 2 V −1 s −1 . Instead, polar atoms in the backbone and ethylene glycol side chains contribute to the ionic conductivity. The resulting OECTs exhibit a normalized maximum transconductance g m,norm of 0.8 S cm −1 and a μC* of 6.7 F cm −1 V −1 s −1 . Data on the microstructure show that such device performance originates from a unique porous morphology together with a highly disordered amorphous microstructure, leading to efficient ion-to-electron coupling. Overall, the design strategy provides an inexpensive and metal-free polymerization route for high-performing n-type OECTs.