Conjugated polymers
achieve redox activity in electrochemical devices
by combining redox-active, electronically conducting backbones with
ion-transporting side chains that can be tuned for different electrolytes.
In aqueous electrolytes, redox activity can be accomplished by attaching
hydrophilic side chains to the polymer backbone, which enables ionic
transport and allows volumetric charging of polymer electrodes. While
this approach has been beneficial for achieving fast electrochemical
charging in aqueous solutions, little is known about the relationship
between water uptake by the polymers during electrochemical charging
and the stability and redox potentials of the electrodes, particularly
for electron-transporting conjugated polymers. We find that excessive
water uptake during the electrochemical charging of polymer electrodes
harms the reversibility of electrochemical processes and results in
irreversible swelling of the polymer. We show that small changes of
the side chain composition can significantly increase the reversibility
of the redox behavior of the materials in aqueous electrolytes, improving
the capacity of the polymer by more than one order of magnitude. Finally,
we show that tuning the local environment of the redox-active polymer
by attaching hydrophilic side chains can help to reach high fractions
of the theoretical capacity for single-phase electrodes in aqueous
electrolytes. Our work shows the importance of chemical design strategies
for achieving high electrochemical stability for conjugated polymers
in aqueous electrolytes.
Charge recombination between oxidized dyes attached to mesoporous TiO2 and electrons in the TiO2 was studied in inert electrolytes using transient absorption spectroscopy. Simultaneously, hole transport within the dye monolayers was monitored by transient absorption anisotropy. The rate of recombination decreased when hole transport was inhibited selectively, either by decreasing the dye surface coverage or by changing the electrolyte environment. From Monte Carlo simulations of electron and hole diffusion in a particle, modelled as a cubic structure, we identify the conditions under which hole lifetime depends on the hole diffusion coefficient for the case of normal (disorder free) diffusion. From simulations of transient absorption and transient absorption anisotropy, we find that the rate and the dispersive character of hole transport in the dye monolayer observed spectroscopically can be explained by incomplete coverage and disorder in the monolayer. We show that dispersive transport in the dye monolayer combined with inhomogeneity in the TiO2 surface reactivity can contribute to the observed stretched electron-hole recombination dynamics and electron density dependence of hole lifetimes. Our experimental and computational analysis of lateral processes at interfaces can be applied to investigate and optimize charge transport and recombination in solar energy conversion devices using electrodes functionalized with molecular light absorbers and catalysts.
Non-fullerene acceptors (NFAs) are excellent light harvesters, yet the origin of such high optical extinction is not well understood. In this work, we investigate the absorption strength of NFAs by...
Singlet fission -whereby one absorbed photon generates two coupled triplet excitons -is a key process for increasing the efficiency of optoelectronic devices by overcoming the Shockley-Queisser limit. A crucial parameter is the rate of dissociation of the coupled triplets, as this limits the number of free triplets subsequently available for harvesting and ultimately the overall efficiency of the device. Here, we present an analysis of the thermodynamic and kinetic parameters for this process in parallel and herringbone dimers measured by electron paramagnetic resonance spectroscopy in co-evaporated films of pentacene in p-terphenyl. The rate of dissociation is faster for parallel dimers than for their herringbone counterparts, as is the recombination to the ground state. DFT calculations, which provide the magnitude of the electronic coupling as well as the distribution of molecular orbitals for each geometry, suggest that lower triplet coupling in the parallel dimer is the driving force for faster dissociation. Conversely, localization of the molecular orbitals and stronger triplet-triplet interaction result in slower dissociation and recombination. The identification and understanding of how intermolecular geometry promote efficient triplet dissociation provides the basis for control of triplet coupling and thereby the optimization of one important parameter of device performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.