The uptake of hydrogen
atoms (H-atoms) into reducible metal oxides
has implications in catalysis and energy storage. However, outside
of computational modeling, it is difficult to obtain insight into
the physicochemical factors that govern H-atom uptake at the atomic
level. Here, we describe oxygen-atom vacancy formation in a series
of hexavanadate assemblies via proton-coupled electron transfer, presenting
a novel pathway for the formation of defect sites at the surface of
redox-active metal oxides. Kinetic investigations reveal that H-atom
transfer to the metal oxide surface occurs through concerted proton–electron
transfer, resulting in the formation of a transient V
III
–OH
2
moiety that, upon displacement of the water
ligand with an acetonitrile molecule, forms the oxygen-deficient polyoxovanadate-alkoxide
cluster. Oxidation state distribution of the cluster core dictates
the affinity of surface oxido ligands for H-atoms, mirroring the behavior
of reducible metal oxide nanocrystals. Ultimately, atomistic insights
from this work provide new design criteria for predictive proton-coupled
electron-transfer reactivity of terminal M=O moieties at the
surface of nanoscopic metal oxides.