-The resistance to fumigant insecticides in stored-products insects is often recorded. Several factors influence the evolution of insecticide resistance. Among these, the frequency of applications and the migration of resistant populations are of primary importance for the stored-product insects. The aim of this study was to characterize the spectrum and investigate the status of phosphine resistance in Brazil, in 13 populations of the coleoptera Tribolium castaneum Herbst (Tenebrionidae), ten populations of Rhyzopertha dominica (Fabr.) (Bostrichidae), and eight populations of Oryzaephilus surinamensis (L.) (Silvanidae). The pattern of resistance dispersion in the populations of these species was also verified. The bioassays for the detection of phosphine resistance followed the FAO standard method. To test the influence of migration in the evolution of the phosphine resistance, the difference of mortality in the discriminating concentration and the geographical distance among each pair wise combination of collection sites were correlated. None of the populations exhibited mortality above 90% in the discriminating concentration, for the three species. Mortality in the discriminating concentration increased with the geographical distance for R. dominica and O. surinamensis. However, no significant linear response was observed among the variables for T. castaneum populations. These results suggest that the dispersion of insects and the local selection are relevant in the evolution of the phosphine resistance in populations of R. dominica and O. surinamensis. In contrast, grain trade and local selection are probably the factors that determine the evolution of the phosphine resistance in populations of T. castaneum.