How can biological plasticity been added to a simulation of neuritic growth? Coming from this question, we have chosen a new access to simulate neuritic growth under the very aspect of meaningful and progredient development of single cells. Based on a specific description-language, we have set up a computer-program, to construct neurite-models and to simulate neuritic interaction during their development. Instead of using mathematical equations, we define various types of cytoskeletons by taking a specified graph grammar. Using this technique, we are able to define strings, combined with other influencing parameters, which allow the setting up of very naturally behaving artificial nervecells, in which distinct statistical variance and fixed rules as given in DNA operate together. In this paper, we want to discuss the underlying principles of the given grammar and to show some results from these computer-simulations, which enable us to study growth, development and other specific characteristics of neurites within a simulator in comparison to in vivo-experiments.