Direct-drive heavy ion beam (HIB) inertial confinement fusion (ICF), or HIF would be a promising future energy source for society. Particle accelerators produce HIBs with precise particle energies, pulse lengths and pulse shapes with high energy efficiencies of ~30-40%. Higher energy driver efficiency means that a lower fusion energy output is required to construct a HIF power station to supply ~1 GW of electricity. A HIF power station could use about 4 to 5 MJ of HIB energy per shot at a shot rate of ~10 Hz. This review is focused on the direct-drive scheme in HIF. In directdrive fuel target HIBs deposit their energy into a shell surrounded by a denser tamping outer layer. The DT (Deuterium-Tritium) fusion fuel, with a total mass of several mg, must be compressed to about one thousand times solid density to reduce the input driver energy and to achieve an adequate burn fraction. Highdensity compression is a major challenge in ICF, requiring that non-uniformity in driver energy deposition be kept lower than a few percent. The axis of an HIB can be made to oscillate sufficiently rapidly to improve the uniformity of energy deposition.