2022
DOI: 10.1007/s11831-021-09684-6
|View full text |Cite|
|
Sign up to set email alerts
|

Review of Machine Learning Techniques for EEG Based Brain Computer Interface

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
45
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
3
1
1

Relationship

0
10

Authors

Journals

citations
Cited by 115 publications
(61 citation statements)
references
References 113 publications
0
45
0
1
Order By: Relevance
“…The dependent brain-computer interface enables people to use some form of motion control, such as gaze. The brain-computer interface based on moving images is one of the most commonly-used paradigms of brain-computer interface [ 79 ]. Independent BCIs such as P300 evoked potentials, steady-state visual evoked potentials (SSVEPs), sensorimotor rhythms, motion-onset visual evoked potentials, and slow cortical potentials can be utilized to extract control signals; SSVEPs are periodic evoked potentials (PEPs) generated by rapidly repeating visual stimulation, particularly at a frequency greater than 6 Hz.…”
Section: Eeg Control Strategiesmentioning
confidence: 99%
“…The dependent brain-computer interface enables people to use some form of motion control, such as gaze. The brain-computer interface based on moving images is one of the most commonly-used paradigms of brain-computer interface [ 79 ]. Independent BCIs such as P300 evoked potentials, steady-state visual evoked potentials (SSVEPs), sensorimotor rhythms, motion-onset visual evoked potentials, and slow cortical potentials can be utilized to extract control signals; SSVEPs are periodic evoked potentials (PEPs) generated by rapidly repeating visual stimulation, particularly at a frequency greater than 6 Hz.…”
Section: Eeg Control Strategiesmentioning
confidence: 99%
“…There is significant research in the area of EEG, exploring how the human brain works [17] [18] [19] [20]. It has been generalised to four different frequency bands of signals that occur in the brain: (i) delta, (ii) theta, (iii) alpha, and (iv) beta.…”
Section: Introductionmentioning
confidence: 99%
“…EEG tabanlı BBA sistemleri kullanılarak, bilgisayar faresi (McFarland, Krusienski, Sarnacki, & Wolpaw, 2008), robotik kol (Cao vd., 2021), tekerlekli sandalye (Palumbo, Gramigna, Calabrese, & Ielpo, 2021) hecelemeye (Yin, Zhou, Jiang, Yu, & Hu, 2014), oyun (Li vd., 2021) ve hatta güvenlik sistemlerine (Ahmad & Ahuja, 2022) kadar birçok uygulama geliştirilmiştir. BBA sistemlerinin en sık kullanıldığı alanlardan biri de heceleme sistemleridir (Aggarwal & Chugh, 2022). Heceleme sistemleri, bireylerin bilgisayar ekranında bulunan sanal bir klavyeyle düşüncelerini yazarak etrafındaki kişilere aktarmalarını sağlayan en güncel BBA uygulamalarından biridir.…”
Section: Introductionunclassified