Fuzzy classification has become of great interest because of its ability to utilize simple linguistically interpretable rules and has overcome the limitations of symbolic or crisp rule based classifiers. This paper introduces an extension to fuzzy classifier: a neutrosophic classifier, which would utilize neutrosophic logic for its working. Neutrosophic logic is a generalized logic that is capable of effectively handling indeterminacy, stochasticity acquisition errors that fuzzy logic cannot handle. The proposed neutrosophic classifier employs neutrosophic logic for its working and is an extension of commonly used fuzzy classifier. It is compared with the commonly used fuzzy classifiers on the following parameters: nature of membership functions, number of rules and indeterminacy in the results generated. It is proved in the paper that extended fuzzy classifier: neutrosophic classifier; optimizes the said parameters in comparison to the fuzzy counterpart. Finally the paper is concluded with justifying that neutrosophic logic though in its nascent stage still holds the potential to be experimented for further exploration in different domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.