In this study, the strength, elongation, and fatigue properties of 7005 aluminum alloy plates with different configurations of precipitates were investigated by means of tensile tests, fatigue tests, and microstructural observation. We found that the number and size of GP zones in an alloy plate matrix increased and the distribution was more uniform after the aging time was extended from 1 h to 4 h at 120 °C, which led to a rise in both strength and elongation of alloy plates with the extending aging time. The fatigue life of the alloy plates shortened slightly at first, then significantly prolonged, and then shortened again with the aging time extending from 1 h to 192 h and a fatigue stress level of 185 MPa and stress ratio (R) = 0. After aging at 120 °C for 96 h, the precipitates in the alloy plate matrix were almost all metastable η′-phase particles, which had the optimal aging strengthening effect on the alloy matrix, and the degree of mismatch between the α-Al matrix and second-phase particles was the smallest; the fatigue crack initiation and propagation resistances were the largest, leading to the best fatigue performance of alloy plates, and the fatigue life of the aluminum plate was the longest, up to 1.272 ´ 106 cycles. When the aging time at 120 °C was extended to 192 h, there were a small number of equilibrium η phases in the aluminum plates that were completely incoherent with the matrix and destroyed the continuity of the aluminum matrix, easily causing stress concentration. As a result, the fatigue life of alloy plates was shortened to 9.422 ´ 105 cycles.