Over the past few years, the continuous evolution of embedded electronic systems has increased electromagnetic interferences problems. It has also generated a new design constraint on electromagnetic compatibility. Hence, predicting the electromagnetic field behavior in the vicinity of the electronic components and systems becomes a priority to avoid the potential for unwanted coupling occurrence, as well as to ensure the electromagnetic compatibility compliance for those components and systems which are embedded in a confined space. As a result, the designers of electronics' equipment are extremely interested in radiated emission models. This paper reports a comparative study in which two different methods will be applied: the equivalent source method and plane wave spectrum method. These two methods will be used to predict the magnetic field behavior in the vicinity of a microstrip patch antenna. The latter works in ISM band for Wi-Fi and Bluetooth applications. The two applied models are constructed from the tangential magnetic fields cartographies of the antenna obtained from HFSS R at 3.5 mm and validated by comparing the HFSS R results with those of the models at a higher elevation. Furthermore, the relative error between the simulated field of the antenna and those of the equivalent source model according to the dipoles number is presented to determine the minimum number of dipoles that allow users to obtain the results with better accuracy. Subsequently, the relative error as function of different elevations along the z axis together with the two methods comparison results is presented.