This paper presents in vitro investigation of an implantable cardiac pacemaker exposed to low frequency magnetic fields. The method used in this study is based on the interaction by inductive coupling through the loop formed by the pacemaker and its loads and the surrounding medium. This interaction results in an induced electromotive force between the terminals of the pacemaker, which can potentially disturb its operation. The studied frequencies are 50/60 Hz and 10/25 kHz. The experimental tests were carried out on several cardiac pacemakers, single chamber, and dual chamber. The results show a window effect of the detection circuits of cardiac pacemakers for the four studied frequencies. The modelling of the test bed requires studying the effects of the induced currents generated by the application of a magnetic field. Analytical calculations and Numerical simulations were carried out. We modelled the interactions of the magnetic field with a simplified representation of pacemaker embedded in the medium. The comparison of the results in the air and in vitro enabled us to make an equivalent electric model. The results obtained in experimental and theoretical studies allowed us to validate the test bed. The method applied is valid for other medical implants such as cardiac defibrillators, implant hearing aids system...etc.
This paper presents in vitro investigation of the eddy current induction effects to the cardiac pacemaker exposed to low frequency magnetic fields. The method used in this study is based to the interaction by inductive coupling through the loop formed by the pacemaker and its leads and the surrounding medium. This interaction results in an induced electromotive force between the terminals of the pacemaker which can potentially disturb the operation of this last. In this article we present experimental results, analytical calculations and numerical simulations using the finite element method.
BackgroundThis work presents an experimental and modeling study of the electromagnetic environment in the vicinity of a high voltage substation located in eastern Algeria (Annaba city) specified with a very high population density. The effects of electromagnetic fields emanating from the coupled multi-lines high voltage power systems (MLHV) on the health of the workers and people living in proximity of substations has been analyzed.MethodsExperimental Measurements for the Multi-lines power system proposed have been conducted in the free space under the high voltage lines. Field's intensities were measured using a referenced and calibrated electromagnetic field meter PMM8053B for the levels 0 m, 1 m, 1.5 m and 1.8 m witch present the sensitive's parts as organs and major functions (head, heart, pelvis and feet) of the human body.ResultsThe measurement results were validated by numerical simulation using the finite element method and these results are compared with the limit values of the international standards.ConclusionWe project to set own national standards for exposure to electromagnetic fields, in order to achieve a regional database that will be at the disposal of partners concerned to ensure safety of people and mainly workers inside high voltage electrical substations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.