For the next century to come, one of the biggest challenges is to provide the mankind with relevant and sufficient resources. The recovery of secondary resources plays a significant role. The industrial processes developed for regaining minerals for production of commodities in a circular economy become ever more important in the European Union and worldwide. Landfill mining (LFM) constitutes an important technological toolset of processes that regain the resources and redistribute them with an accompanying diminishment of hazardous influence of environmental contamination and other threats for human health hidden in former dump sites and landfills. 'Classical LFM' is a useful technology to discover hidden resources and look at the big picture of resources in the local, regional and global perspective. Therefore, this paper considers development of paradigms and attitudes to LFM as the technology for regaining calorific value; the furthering of deposited material valuable to more advanced concepts of enhanced LFM (ELFM); the recovery of landfill space and land value, and, finally, the possibility of full ecosystem services revitalization. The future of our civilisation depends on our wise use of commodities. Thus, waste operations beyond the Zero waste concept must be applied if mankind is to conquer space and the abyssal plains to conduct mining in the deepest oceans on the Earth. Other research areas feasible for LFM in terms of the environmental rehabilitation are given in the review. This compilation summarises the previous, current and future trends of LFM 2 technology regarding the paradigm developments that are influencing the attitude of scientists, industry and society to LFM as a complex tool for implementing the circular economy in practice. This review paper is based on a historical overview of global case studies and explores the methodology of waste management as regards the different tools for geochemical, geophysical and remote sensing that are used for field studies prior to the decisions whether LFM will be successful in an individual case. New technological developments of ELFM for the energy industry is described combined with a review of innovative material production. One chapter is dedicated to the Efficient Use of Resources and Optimal Production Economy (EUROPE) estimation model. The hazardous impacts of landfills, such as greenhouse gas emission and pollutants, are discussed. Throughout history, the major part of the 'LFM economy' has been viewed from a point of view of recovery of natural resources. Therefore, our main philosophy was to provide a historical experience linking with modern ideas of LFM to the increasingly relevant concept of a circular economy. The world is heading towards a restricted access to key resources. However, humanity should not limit itself to frame these restrictions but should also have a profound view on the global economy and life styles for future generations from an environmental and non-material resource standpoint. It is concluded that the big ...