The Ranque‐Hilsch vortex tube is a device for continuously separating an inlet pressurized fluid stream into two outlet streams of warmer and cooler temperatures at lower pressures, with no moving parts and without any heat or work effects. It has been applied to cool or heat small systems where refrigeration is impractical. Studies of the fluid mechanics inside the tube have not fully established the flow structure that provides the separation. Thermodynamic energy and entropy balances giving relations among properties and the relative amounts of the three fluid streams have been examined to determine consistency among measured data along with sensitivity of the phenomena to tube configuration, measurement error, and properties. The strong response of the temperature separation to small variations in entropy generation is shown to limit the possibilities for generalized prediction of vortex tube behavior. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1067–1074, 2018