2018
DOI: 10.1117/1.jrs.12.021501
|View full text |Cite
|
Sign up to set email alerts
|

Review of synthetic aperture radar frequency, polarization, and incidence angle data for mapping the inundated regions

Abstract: The use and importance of synthetic aperture radar (SAR) data for flood area mapping studies have been proved beyond the doubts as SAR signals are able to penetrate the thick formation of clouds and are able to receive the reflected signals of surface objects even during extreme weather conditions. At the same time, the accuracies of an SAR image-based flood area mapping model has a direct relationship with the frequency of the source SAR signal, the polarization mode that has been used, and the incidence angl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
13
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 16 publications
(13 citation statements)
references
References 56 publications
0
13
0
Order By: Relevance
“…Namely, the same observation object in different geographical locations, different periods, or different climate and seasonal variations does not have the same image. Moreover, the signal's backscattering and the measuring quality of the imaged object also change with the change in the SAR sensor parameters: polarization, wavelength, and local angle of incidence [26,38]. Furthermore, assuming the constancy of SAR sensor parameters, which is true for SAR systems with a repeated trajectory (orbit) [19], the intensity of reflected SAR signals is a function of heterogeneity (roughness) of the measured surface and conductivity and dielectricity of the Earth's surface [32].…”
Section: Sar Parameters and Forest Characteristics For Floodplain Mappingmentioning
confidence: 99%
See 4 more Smart Citations
“…Namely, the same observation object in different geographical locations, different periods, or different climate and seasonal variations does not have the same image. Moreover, the signal's backscattering and the measuring quality of the imaged object also change with the change in the SAR sensor parameters: polarization, wavelength, and local angle of incidence [26,38]. Furthermore, assuming the constancy of SAR sensor parameters, which is true for SAR systems with a repeated trajectory (orbit) [19], the intensity of reflected SAR signals is a function of heterogeneity (roughness) of the measured surface and conductivity and dielectricity of the Earth's surface [32].…”
Section: Sar Parameters and Forest Characteristics For Floodplain Mappingmentioning
confidence: 99%
“…The characteristics of the observed object and sensor parameters, namely, the wavelengths, frequency, polarization of the transmitted and received signal, incidence angle, and direction of observation, determine the strength of the feedback signal (scattering) [38]; therefore, they must be taken into account when interpreting and analyzing the SAR data [7,19]. Researchers [7,30,[40][41][42][43] have described the interaction of SAR impulses with forest and forestland.…”
Section: Sar Parameters and Forest Characteristics For Floodplain Mappingmentioning
confidence: 99%
See 3 more Smart Citations