Cooperative communication that enables the use of relays between a base station (BS) and end users is an effective technique against fading to improve network performance, especially in increasing spectral efficiency (SE) and network coverage. However, systems that use cooperative communication have weaknesses in the structure, such as resistance to latency and an increase in the bandwidth of substitute users (SU), which can be improved by optimizing the relay selection method effectively. The system due to insufficient spacing between antennas and insufficient scattering in the channel has spatially faded that leads to spatial correlation. We use Kronecker statistical model correlated multiantenna channels to implement detection techniques and eliminate interference in cooperative communication. The validity of the Kronecker model lies in the fact that correlation coefficients of transmission are independent of the receiving antennas. In other words, the spatial correlation model separates both ends of the communication link. Therefore, using the minimum mean-squared-error (MMSE) technique, we have removed the need for optimal elimination of interference between SU and relay service provider or primary user (PU). Regardless of BS performance, the scope of this work is restricted to the layer after the BS in the interaction between the service providers and substitute users. The primary purpose of the presented method is to improve the spectral gain through the elimination of interference. Simulation results show about 10% of SE improvement along with considerable traffic gain.