The present energy scenario hydrogen fuel plays a dominant role in the power generation. Due to its unique characteristics of an extensive range of flammability, high flame speed, and diffusivity. In this present investigation, the diesel engine is converted into dual-fuel mode devoid of major conversions of the engine. The tests are performed on a dual-fuel mode and investigated the efficiency, emissions, and combustion features of the diesel engine. In the present context, hydrogen and biogas are injected from the inlet manifold as subsidiary fuel and diesel are injected as pilot fuel. The gaseous fuel injected in two different flow rates they are, 3 litres per minute (lpm), and 4lpm. The results from the experimentation revealed that the diesel with 4 lpm of hydrogen shows the 31.11 % enhancement of brake thermal efficiency but it shows 4.14% higher NO X emissions when compared with the pure diesel. But it shows. At the same time diesel with 4 lpm of Biogas exhibits 15.90% enhancement of brake thermal efficiency and 8.96% decrease in the NO X emissions in contrast to that of the single-mode of fuel with diesel.