The electronic properties of strontium ruthenate SrRuO3 perovskite oxide thin filmsare modified by epitaxial strain, as determined by growing on different substrates by pulsedlaser deposition. Temperature dependence of the transport properties indicates that tensilestrain deformation of the SrRuO3 unit cell reduces the metallicity of the material as well as itsmetal-insulator-transition (MIT) temperature. On the contrary, the shrinkage of the Ru–O–Rubuckling angle due to compressive strain is counterweighted by the increased overlap of theconduction Ru-4d orbitals with the O-2p ones due to the smaller interatomic distances resulting intoan increased MIT temperature, i.e., a more conducting material. In particular, in the more metallicsamples, the core level X-ray photoemission spectroscopy lineshapes show the occurrence of anextra-peak at the lower binding energies of the main Ru-3d peak that is attributed to screening,as observed in volume sensitive photoemission of the unstrained material.