Flexible inorganic bioelectronics represent a newly emerging and rapid developing research area. With its great power in enhancing the acquisition, management and utilization of health information, it is expected that these flexible and stretchable devices could underlie the new solutions to human health problems. Recent advances in this area including materials, devices, integrated systems and their biomedical applications indicate that through conformal and seamless contact with human body, the measurement becomes continuous and convenient with yields of higher quality data. This review covers recent progresses in flexible inorganic bio-electronics for human physiological parameters' monitoring in a wearable and continuous way. Strategies including materials, structures and device design are introduced with highlights toward the ability to solve remaining challenges in the measurement process. Advances in measuring bioelectrical signals, i.e., the electrophysiological signals (including EEG, ECoG, ECG, and EMG), biophysical signals (including body temperature, strain, pressure, and acoustic signals) and biochemical signals (including sweat, glucose, and interstitial fluid) have been summarized. In the end, given the application property of this topic, the future research directions are outlooked.