2021
DOI: 10.3390/molecules26041022
|View full text |Cite
|
Sign up to set email alerts
|

Review on the Use of Artificial Intelligence to Predict Fire Performance of Construction Materials and Their Flame Retardancy

Abstract: The evaluation and interpretation of the behavior of construction materials under fire conditions have been complicated. Over the last few years, artificial intelligence (AI) has emerged as a reliable method to tackle this engineering problem. This review summarizes existing studies that applied AI to predict the fire performance of different construction materials (e.g., concrete, steel, timber, and composites). The prediction of the flame retardancy of some structural components such as beams, columns, slabs… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
10

Relationship

0
10

Authors

Journals

citations
Cited by 20 publications
(6 citation statements)
references
References 95 publications
(132 reference statements)
0
5
0
1
Order By: Relevance
“…The precise choice of materials plays a pivotal role in various sectors (Prieto et al, 2023;Pedro et al, 2023;Rane et al, 2023;Rane et al, 2023a;Patil and Rane, 2023;Rane et al, 2023b;Rane et al, 2023c). ChatGPT can aid in the selection process by furnishing information regarding the characteristics, expenses, and environmental repercussions of various materials (Oluleye et al, 2023;Stanev et al, 2021;Nguyen et al, 2021). Engineers and architects can engage in dialogues with the model to delve into optimal materials for specific applications, factoring in considerations such as resilience, sustainability, and cost-effectiveness (Roslon, 2022;Liu and Lin, 2021;.…”
Section: Materials Selection and Evaluationmentioning
confidence: 99%
“…The precise choice of materials plays a pivotal role in various sectors (Prieto et al, 2023;Pedro et al, 2023;Rane et al, 2023;Rane et al, 2023a;Patil and Rane, 2023;Rane et al, 2023b;Rane et al, 2023c). ChatGPT can aid in the selection process by furnishing information regarding the characteristics, expenses, and environmental repercussions of various materials (Oluleye et al, 2023;Stanev et al, 2021;Nguyen et al, 2021). Engineers and architects can engage in dialogues with the model to delve into optimal materials for specific applications, factoring in considerations such as resilience, sustainability, and cost-effectiveness (Roslon, 2022;Liu and Lin, 2021;.…”
Section: Materials Selection and Evaluationmentioning
confidence: 99%
“…A pesar de ello el trabajo en la construcción muestra muchas fallas y deficiencias en los procesos, lo que ha conllevado el ingreso de nuevas tecnologías para acelerar los trabajos, donde la inteligencia artificial ha tenido un crecimiento dentro de la población (40) , asimismo (41) las nuevas innovaciones tienen muchas ventajas para evaluar el desempeño de los materiales, mano de obra y el proceso constructivo (42) de esta manera se puede contribuir con nuevas herramientas y una combinación de aprendizajes, conocimientos que abarca la inteligencia artificial.…”
Section: Laboresunclassified
“…Due to its good ame retardant ability, it is widely used in ame retardant treatments such as coatings, plastics, fabrics, and wood. 15,16 Compared with halogen ame retardants, APP has the advantages of low cost and low toxicity. Researchers have used APP to replace metal hydroxide ameretardant llers in epoxy resin to prepare ame-retardant composite materials, which reduced the density of the composite materials and achieved better ame-retardant effects.…”
Section: Introductionmentioning
confidence: 99%