Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Constraint Programming (CP) is a powerful technique for solving large-scale combinatorial (optimisation) problems. Constraint solving a given problem proceeds in two phases: modelling and solving. Effective modelling has an huge impact on the performance of the solving process. This thesis presents a framework in which the users are not required to make modelling decisions, concrete CP models are automatically generated from a high level problem specification. In this framework, modelling decisions are encoded as generic rewrite rules applicable to many different problems.First, modelling decisions are divided into two broad categories. This categorisation guides the automation of each kind of modelling decision and also leads us to the architecture of the automated modelling tool.Second, a domain-specific declarative rewrite rule language is introduced. Thanks to the rule language, automated modelling transformations and the core system are decoupled. The rule language greatly increases the extensibility and maintainability of the rewrite rules database. The database of rules represents the modelling knowledge acquired after analysis of expert models. This database must be easily extensible to best benefit from the active research on constraint modelling. Third, the automated modelling system Conjure is implemented as a realisation of these ideas; having an implementation enables empirical testing of the quality of generated models. The ease with which rewrite rules can be encoded to produce good models is shown. Furthermore, thanks to the generality of the system, one needs to add a very small number of rules to encode many transformations.Finally, the work is evaluated by comparing the generated models to expert models found in the literature for a wide variety of benchmark problems. This evaluation confirms the hypothesis that expert models can be automatically generated starting from high level problem specifications. An method of automatically identifying good models is also presented.In summary, this thesis presents a framework to enable the automatic generation of efficient constraint models from problem specifications. It provides a pleasant environment for both problem owners and modelling experts. Problem owners are presented with a fully automated constraint solution process, once they have a precise description of their problem. Modelling experts can now encode their precious modelling expertise as rewrite rules instead of merely modelling a single problem; resulting in reusable constraint modelling knowledge.
Constraint Programming (CP) is a powerful technique for solving large-scale combinatorial (optimisation) problems. Constraint solving a given problem proceeds in two phases: modelling and solving. Effective modelling has an huge impact on the performance of the solving process. This thesis presents a framework in which the users are not required to make modelling decisions, concrete CP models are automatically generated from a high level problem specification. In this framework, modelling decisions are encoded as generic rewrite rules applicable to many different problems.First, modelling decisions are divided into two broad categories. This categorisation guides the automation of each kind of modelling decision and also leads us to the architecture of the automated modelling tool.Second, a domain-specific declarative rewrite rule language is introduced. Thanks to the rule language, automated modelling transformations and the core system are decoupled. The rule language greatly increases the extensibility and maintainability of the rewrite rules database. The database of rules represents the modelling knowledge acquired after analysis of expert models. This database must be easily extensible to best benefit from the active research on constraint modelling. Third, the automated modelling system Conjure is implemented as a realisation of these ideas; having an implementation enables empirical testing of the quality of generated models. The ease with which rewrite rules can be encoded to produce good models is shown. Furthermore, thanks to the generality of the system, one needs to add a very small number of rules to encode many transformations.Finally, the work is evaluated by comparing the generated models to expert models found in the literature for a wide variety of benchmark problems. This evaluation confirms the hypothesis that expert models can be automatically generated starting from high level problem specifications. An method of automatically identifying good models is also presented.In summary, this thesis presents a framework to enable the automatic generation of efficient constraint models from problem specifications. It provides a pleasant environment for both problem owners and modelling experts. Problem owners are presented with a fully automated constraint solution process, once they have a precise description of their problem. Modelling experts can now encode their precious modelling expertise as rewrite rules instead of merely modelling a single problem; resulting in reusable constraint modelling knowledge.
In constraint solving, a critical bottleneck is the formulation of aneffective constraint model of an input problem. The Conjure system describedin this paper, a substantial step forward over prototype versions of Conjurepreviously reported, makes a valuable contribution to the automation ofconstraint modelling by automatically producing constraint models from theirspecifications in the abstract constraint specification language Essence. Aset of rules is used to refine an abstract specification into a concreteconstraint model. We demonstrate that this set of rules is readily extensibleto increase the space of possible constraint models Conjure can produce. Ourempirical results confirm that Conjure can reproduce successfully the kernelsof the constraint models of 32 benchmark problems found in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.