Carbon nanotube (CNT) is considered a promising material for radio-frequency (RF) applications, owing to its high carrier mobility and saturated drift velocity, as well as ultra-small intrinsic gate capacitance. Here, we review progress on CNT-based devices and integrated circuits for RF applications, including theoretical projection of RF performance of CNT-based devices, preparation of CNT materials, fabrication, optimization of RF field-effect transistors (FETs) structures, and ambipolar FET-based RF applications, and we outline challenges and prospects of CNT-based RF applications.