Wireless sensor networks (WSNs) are emerging as useful technology for information extraction from the surrounding environment by using numerous small-sized sensor nodes that are mostly deployed in sensitive, unattended, and (sometimes) hostile territories. Traditional cryptographic approaches are widely used to provide security in WSN. However, because of unattended and insecure deployment, a sensor node may be physically captured by an adversary who may acquire the underlying secret keys, or a subset thereof, to access the critical data and/or other nodes present in the network. Moreover, a node may not properly operate because of insufficient resources or problems in the network link. In recent years, the basic ideas of trust and reputation have been applied to WSNs to monitor the changing behaviors of nodes in a network. Several trust and reputation monitoring (TRM) systems have been proposed, to integrate the concepts of trust in networks as an additional security measure, and various surveys are conducted on the aforementioned system. However, the existing surveys lack a comprehensive discussion on trust application specific to the WSNs. This survey attempts to provide a thorough understanding of trust and reputation as well as their applications in the context of WSNs. The survey discusses the components required to build a TRM and the trust computation phases explained with a study of various security attacks. The study investigates the recent advances in TRMs and includes a concise comparison of various TRMs. Finally, a discussion on open issues and challenges in the implementation of trust-based systems is also presented.
With the mushroom growth of state-of-the-art digital image and video manipulations tools, establishing the authenticity of multimedia content has become a challenging issue. Digital image forensics is an increasingly growing research field that symbolises a never ending struggle against forgery and tampering. This survey attempts to cover the blind techniques that have been proposed for exposing forgeries. This work dwells on the detection techniques for three of the most common forgery types, namely copy/move, splicing and retouching.
SUMMARY Data centers are experiencing a remarkable growth in the number of interconnected servers. Being one of the foremost data center design concerns, network infrastructure plays a pivotal role in the initial capital investment and ascertaining the performance parameters for the data center. Legacy data center network (DCN) infrastructure lacks the inherent capability to meet the data centers growth trend and aggregate bandwidth demands. Deployment of even the highest‐end enterprise network equipment only delivers around 50% of the aggregate bandwidth at the edge of network. The vital challenges faced by the legacy DCN architecture trigger the need for new DCN architectures, to accommodate the growing demands of the ‘cloud computing’ paradigm. We have implemented and simulated the state of the art DCN models in this paper, namely: (a) legacy DCN architecture, (b) switch‐based, and (c) hybrid models, and compared their effectiveness by monitoring the network: (a) throughput and (b) average packet delay. The presented analysis may be perceived as a background benchmarking study for the further research on the simulation and implementation of the DCN‐customized topologies and customized addressing protocols in the large‐scale data centers. We have performed extensive simulations under various network traffic patterns to ascertain the strengths and inadequacies of the different DCN architectures. Moreover, we provide a firm foundation for further research and enhancement in DCN architectures. Copyright © 2012 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.