In the midst of Internet of Things development, a first requirement was tracking and identification of those mentioned "things which could be done thanks to Radio Frequency Identification. However, since then, the development of RFID allowed a new range of applications among which is remote sensing of environmental values. While RFID can be seen as a more efficient solution than traditional Wireless Sensor Networks, two main issues remain: first reading collisions and second proficient data gathering solution. In this paper, we examine the implementation of two applications: for industrial IoT and for smart cities, respectively. Both applications, in regards to their requirements and configuration, challenge the operation of a RFID sensing solution combined with a dynamic wireless data gathering over multihops. They require the use of both mobile and fixed readers to cover the extent of deployment area and a quick retrieval of tag information. We propose a distributed crosslayer solution for improving the efficiency of the RFID system in terms of collision and throughput but also its proficiency in terms of tag information routing towards one or multiple sinks. Simulation results show that we can achieve high level of throughput while maintaining a low level of collision and a fairness of reader medium access above 95% in situations where readers can be fix and mobile, while tag information is routed with a data rate of ≈ 97% at worst and reliable delays for considered applications.