This article investigates complexity and approximability properties of combinatorial optimization problems yielded by the notion of Shared Risk Resource Group (SRRG). SRRG has been introduced in order to capture network survivability issues where a failure may break a whole set of resources, and has been formalized as colored graphs, where a set of resources is represented by a set of edges with same color. We consider here the analogous of classical problems such as determining paths or cuts with the minimum numbers of colors or color disjoint paths. These optimization problems are much more difficult than their counterparts in classical graph theory. In particular standard relationship such as the Max Flow -Min Cut equality do not hold any longer. In this article we identify cases where these problems are polynomial, for example when the edges of a given color form a connected subgraph, and otherwise give hardness and non approximability results for these problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.