This chapter introduces the RFID tag floor localization method with multiple recognition ranges and its mathematical formulation to improve position estimation accuracy. Using the multiple recognition ranges of RFID reader, the reader can obtain more information about the distances to the tags on the tag floor. The information is used to improve the position estimation performance. At first, this chapter reviews the RFID tag floor localization method with single recognition range for mobile robots (Park et al., 2010) and The performance measure based on the position estimation error variance for the localization method. For the second, this paper extends the mathematical formulation of the localization method and the performance measure for the case of multiple recognition ranges. This work is related to the previous work (Park et al., 2009) that used multiple powers to improve position estimation performance. However, previous work lacks analysis and mathematical formulation of general RFID tag recognition models. We extend the mathematical formulation and the analysis of the single recognition range RFID tag floor localization method (Park et al., 2010) to the multiple recognition range case. Then the minimum error variance of multiple recognition range is introduced as a lower bound of position estimation error variance. Finally, it presents performance improvement of proposed localization method via the Monte-Carlo simulation and simple experiments. The analysis for the simulation and experimental results and the consideration for real application will be given. This chapter is organized as follows; This section discusses sensor systems used in the mobile robot localization. Then the advantages of the RFID systems as sensor systems for localization are discussed and the researches on the systems are reviewed. Section 2 introduces the RFID tag floor localization, its mathematical formulation and its performance index. Section 3 represents the motivation of introducing the use of multiple recognition ranges for the RFID tag floor localization method, and extend the mathematical formulation and the error variance for the multiple recognition range case. Section 4 conducts the Monte-Carlo simulation to show the improvement of the position estimation performance when the multiple recognition range is used. Section 5 represents experimental results that support the simulation results. In Section 6, the minimum error variance (Park et al., 2010) as a lower bound of error variance is extended to the multiple recognition range case. Section 7 gives the conclusions, discussions and tasks for the further researches.