2021
DOI: 10.1016/j.jretconser.2021.102566
|View full text |Cite
|
Sign up to set email alerts
|

RFM-based repurchase behavior for customer classification and segmentation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
14
0
3

Year Published

2021
2021
2024
2024

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 56 publications
(25 citation statements)
references
References 12 publications
0
14
0
3
Order By: Relevance
“…Dawane, Waghodekar, and Pagare (2021) used the RFM model and the k ‐means algorithm to cluster customers' behavior. Rahim, Mushafiq, Khan, and Arain (2021) detected the repurchase pattern of customers based on RFM features and statistical analysis of the purchase data. Zong and Xing (2021) improved the RFM model based on the impact of cost to provide a more comprehensive evaluation of customer value.…”
Section: Materials and Backgroundmentioning
confidence: 99%
“…Dawane, Waghodekar, and Pagare (2021) used the RFM model and the k ‐means algorithm to cluster customers' behavior. Rahim, Mushafiq, Khan, and Arain (2021) detected the repurchase pattern of customers based on RFM features and statistical analysis of the purchase data. Zong and Xing (2021) improved the RFM model based on the impact of cost to provide a more comprehensive evaluation of customer value.…”
Section: Materials and Backgroundmentioning
confidence: 99%
“…Case study of a retail business [40]; Genomics-first evaluation of heart disease associated with titin-truncating variants [41]; Marketing strategies evaluation based on big data analysis: a CLUSTERING-MCDM approach [42]; Predicting customer behavior with activation loyalty per period. From RFM to RFMAP [43]; A review of the application of RFM model [5]; Predicting customer value per product: From RFM to RFM/P [44]; RFM-based repurchase behavior for customer classification and segmentation [45]; Customer stratification theory and value evaluation-analysis based on improved RFM model [46].…”
Section: Studiesmentioning
confidence: 99%
“…Sementara itu, setiap perusahaan memiliki tantangannya sendiri, seperti proses mengumpulkan, memvisualisasikan, dan menganalisis data pelanggan, yang merupakan aset yang paling berharga [9]. Setiap perusaan melakukan analisis data untuk membuka jalan baru bagi lebih banyak pelanggan, lebih banyak keuntungan, dan pengambilan keputusan yang lebih baik [10], [11]. Umunya, perusahaan memiliki banyak data pelanggan, sehingga penerapan DS dapat memanfaatkan data dari umpan balik pelanggan dunia nyata untuk mengembangkan dan menginformasikan produk dan strategi pemasaran mereka [12].…”
Section: Pendahuluanunclassified
“…Dalam manajemen pemasaran, potensi dalam membuka wawasan untuk memenangkan, mempertahankan pelanggan, mendorong efisiensi bisnis, dan pada akhirnya meningkatkan kinerja dalam hal penjualan dan minat pelanggan. Dalam beberapa tahun ini, banyak peneliti mengusulkan analisis recency, frequency dan monetary (RFM) seperti Rahim, M et al [10] menerapkan pemodelan RFM dan teknik pemodelan data untuk mendeteksi pola perilaku pelanggan. Mereka mengusulkan tiga model berbeda untuk klasifikasi pelanggan yaitu Multi-Layer Perceptron dengan tingkat akurasi 99% lebih unggul dari metode Suport Vector Machine (SVM) dengan akurasi 95% dan Decision Tree Classification (DTC) sebesar 98%.…”
Section: Tinjauan Literaturunclassified