Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this work we describe the development, characterization, and integration of a 16-channel, 400-µm diameter active area, double-ended read-out NbTiN superconducting nanowire single-photon detector (SNSPD) array and the supporting electronics used in an RF/Optical hybrid telescope for deep-space laser communications. This is the first fielddemonstration of a multi-channel, co-wound, double-ended read-out SNSPD array. With the number and complexity of future space exploration missions expected to increase, NASA is investigating ways to augment the information capacity of the Deep Space Network (DSN) global array of RF receivers used to track and communicate with these spacecrafts. Optical communication offers a path toward increasing the overall bandwidth of the DSN while allowing for higher data throughput for the same size weight and power (SWAP) transmitter on the spacecraft. NASA's RF/Optical Hybrid (RFO) program proposes using a segmented, 8-10-meter equivalent aperture primary mirror mounted on existing 34meter diameter beam waveguide (BWG) RF antennas to couple light into photon counting detectors for pulse position modulation (PPM) and on-off keying (OOK) data formats. JPL has deployed a pathfinder hybrid telescope on a DSN BWG antenna in Goldstone, California. The pathfinder couples light from a 1.2-meter effective diameter, 7-hexagonalsegment mirror assembly to a 400-µm core graded-index multimode fiber. This fiber is then routed to a cryostat and coupled to an SNSPD array through free-space optics. Coupling from a large diameter fiber to an SNSPD array while maintaining a small number of readout channels from the cryostat presents some unique challenges for the SNSPD array and receiver design.
In this work we describe the development, characterization, and integration of a 16-channel, 400-µm diameter active area, double-ended read-out NbTiN superconducting nanowire single-photon detector (SNSPD) array and the supporting electronics used in an RF/Optical hybrid telescope for deep-space laser communications. This is the first fielddemonstration of a multi-channel, co-wound, double-ended read-out SNSPD array. With the number and complexity of future space exploration missions expected to increase, NASA is investigating ways to augment the information capacity of the Deep Space Network (DSN) global array of RF receivers used to track and communicate with these spacecrafts. Optical communication offers a path toward increasing the overall bandwidth of the DSN while allowing for higher data throughput for the same size weight and power (SWAP) transmitter on the spacecraft. NASA's RF/Optical Hybrid (RFO) program proposes using a segmented, 8-10-meter equivalent aperture primary mirror mounted on existing 34meter diameter beam waveguide (BWG) RF antennas to couple light into photon counting detectors for pulse position modulation (PPM) and on-off keying (OOK) data formats. JPL has deployed a pathfinder hybrid telescope on a DSN BWG antenna in Goldstone, California. The pathfinder couples light from a 1.2-meter effective diameter, 7-hexagonalsegment mirror assembly to a 400-µm core graded-index multimode fiber. This fiber is then routed to a cryostat and coupled to an SNSPD array through free-space optics. Coupling from a large diameter fiber to an SNSPD array while maintaining a small number of readout channels from the cryostat presents some unique challenges for the SNSPD array and receiver design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.