We have observed low-threshold optical hyperparametric oscillations in a high-Q fluorite whispering gallery mode resonator. The oscillations result from the resonantly enhanced four-wave mixing occurring due to Kerr nonlinearity of the material. We demonstrate that, because of the narrow bandwidth of the resonator modes as well as the high efficiency of the resonant frequency conversion, the oscillations produce stable narrow-band beat-note of the pump, signal, and idler waves. A theoretical model for this process is described.
Concerted efforts are underway to establish an infrastructure for a global quantum Internet to realise a spectrum of quantum technologies. This will enable more precise sensors, secure communications, and faster data processing. Quantum communications are a front-runner with quantum networks already implemented in several metropolitan areas. A number of recent proposals have modelled the use of space segments to overcome range limitations of purely terrestrial networks. Rapid progress in the design of quantum devices have enabled their deployment in space for in-orbit demonstrations. We review developments in this emerging area of space-based quantum technologies and provide a roadmap of key milestones towards a complete, global quantum networked landscape. Small satellites hold increasing promise to provide a cost effective coverage required to realise the quantum Internet. The state of art in small satellite missions is reviewed and the most current in-field demonstrations of quantum cryptography are collated. The important challenges in space quantum technologies that must be overcome and recent efforts to mitigate their effects are summarised. A perspective on future developments that would improve the performance of space quantum communications is included. The authors conclude with a discussion on fundamental physics experiments that could take advantage of a global, space-based quantum network.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
We demonstrate strongly nondegenerate optical continuous-wave parametric oscillations in crystalline whispering gallery mode resonators fabricated from LiNbO3. The required phase matching is achieved by geometrical confinement of the modes in the resonator.
We demonstrate a novel technique for instituting complex and arbitrary shaped micron-scale domain patterns in LiNbO3 at room temperature. Fabrication of continuous domains as narrow as 2 microm across and hexagonal patterns of the same order accompanied by real time visualization of the poling process are presented.
We theoretically propose and experimentally demonstrate the design of a novel one-dimensional ringlike macroscopic optical circuit element. The similarity between morphologies of an optical planar waveguide and a whispering-gallery axially symmetric solid-state resonator is used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.