The development of a controlled-release dosage form of antifungals is of crucial importance in view of the side-effects of conventional oral and intravenous treatments of Sporotrichosis. In this study, systems composed of polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol (PPG-5-CETETH-20) as a surfactant, oleic acid as an oil phase, and water were developed as a possible fluconazole transdermal drug delivery system. The systems were characterised by polarised light microscopy (PLM), SAXS, and rheological analysis, followed by cellular and histological analyses, in vitro release assays, and ex vivo skin permeation and retention studies using porcine ear tissue and a Franz diffusion cell. PLM and SAXS results indicated that the mixtures of surfactant, oil and water formed micellar and lamellar phases. The incorporation of fluconazole in these systems was greater than in water and conventional dosage forms. Micellar systems behave as Newtonian fluids, being more viscous than elastic in rheological analysis, and lamellar phases behave as pseudoplastic fluids with high elastic moduli. In vitro and in vivo biological assays showed that the formulations did not affect normal cell macrophages and did not promote skin irritation. The release profile indicated that fluconazole could be released in a controlled manner. It was found that the systems enhanced drug permeation and skin retention by changing only the composition of the components in the formulations. Therefore, PPG-5-CETETH-20-based systems have great potential as transdermal systems with different structural and rheological characteristics for Sporotrichosis treatment using antifungal drugs.vehicles. Surfactants are able to stabilise mixtures of components with different polarities, thus creating additional regions for hydrophilic and lipophilic solubilisation of drugs. The drug can be protected against the dissolution medium due to the interfacial membrane, which is composed of the surfactant layer that the drug must pass through to be released. In this manner, surfactant systems also confer reservoir properties. The phase behaviour of surfactants enable the formation of microemulsions and liquid crystals, which is extremely attractive for nanotechnology because these structures are organised on the nanometric scale. In addition to the advantage of increased stability, their production can be scaled up easily. Varying the composition and proportions of surfactant, oil, and aqueous phase, it is possible to control the viscosity and texture of the systems above, which could lead to the immobilisation or localisation of the formulation at specific sites in the body and routes of administration. Therefore, surfactant systems have great potential as transdermal nanostructured drug delivery systems [6].Recently, our research group has demonstrated that the surfactant polyoxypropylene (5)