Rhizobium leguminosarum is a soil bacterium that is an intracellular symbiont of leguminous plants through the formation of nitrogen-fixing root nodules. Due to the changing environments that rhizobia encounter, the cell is often faced with a variety of cell altering stressors that can compromise the cell envelope integrity. A previously uncharacterized operon (RL3499-RL3502) has been linked to proper cell envelope function, and mutants display pleiotropic phenotypes including an inability to grow on peptide-rich media. In order to identify functional partners to the operon, suppressor mutants capable of growth on complex, peptide-rich media were isolated. A suppressor mutant of a non-polar mutation to RL3500 was chosen for further characterization. Transposon mutagenesis, screening for loss of the suppressor phenotype, led to the identification of a Tn5 insertion in an uncharacterized tetratricopeptide-repeat-containing protein RL0936. Furthermore, RL0936 had a 3.5-fold increase in gene expression in the suppressor strain when compared with the WT and a 1.5-fold increase in the original RL3500 mutant. Mutation of RL0936 decreased desiccation tolerance and lowered the ability to form biofilms when compared with the WT strain. This work has identified a potential interaction between RL0936 and the RL3499-RL3502 operon that is involved in cell envelope development in R. leguminosarum, and has described phenotypic activities to a previously uncharacterized conserved hypothetical gene.