Ni coatings with high catalytic efficiency were synthesised in this work, obtained by increasing the active surface and modifying Pd as a noble metal. Porous Ni foam electrodes were obtained by electrodeposition of Al on a nickel substrate. Deposition of Al was carried out with potential −1.9 V for a time of 60 min in NaCl–KCl-3.5 mol%AlF3 molten salt mixture at 900 °C, which is connected with the formation of the Al-Ni phase in the solid state. Dissolution of Al and Al-Ni phases was performed by application of the potential −0.5 V, which provided the porous layer formation. The obtained porous material was compared to flat Ni plates in terms of electrocatalytic properties for ethanol oxidation in alkaline solutions. Cyclic voltammetry measurements in the non-Faradaic region revealed the improvement in morphology development for Ni foams, with an active surface area 5.5-times more developed than flat Ni electrodes. The catalytic activity was improved by the galvanic displacement process of Pd(II) ions from dilute chloride solutions (1 mM) at different times. In cyclic voltammetry scans, the highest catalytic activity was registered for porous Ni/Pd decorated at 60 min, where the maximum oxidation peak for 1 M ethanol achieved +393 mA cm−2 compared to the porous unmodified Ni electrode at +152 mA cm−2 and flat Ni at +55 mA cm−2. Chronoamperometric measurements in ethanol oxidation showed that porous electrodes were characterised by higher catalytic activity than flat electrodes. In addition, applying a thin layer of precious metal on the surface of nickel increased the recorded anode current density associated with the electrochemical oxidation process. The highest activity was recorded for porous coatings after modification in a solution containing palladium ions, obtaining a current density value of about 55 mA cm−2, and for a flat unmodified electrode, only 5 mA cm−2 after 1800 s.