Dynamic alterations in the spatial organization of cytoskeletal elements constitute a prominent morphological feature of the early, syncytial stages of embryogenesis in Drosophila. Here, we describe and characterize the dynamic behavior of cytoplasmic, subcortical microfilaments, which form a series of nucleus-associated structures, at different phases of the simultaneous nuclear division cycles characteristic of early Drosophila embryos. Remodeling of the cytoplasmic microfilament arrays takes place in parallel to the established cyclic reorganization of cortical microfilament structures. We provide evidence that the cortical and subcortical microfilament populations organize independently of each other, and in response to distinct instructive cues. Specifically, formation of subcortical microfilament structures appears to rely on, and spatially mirror, the organization of polarized microtubule arrays, while cortical microfilament restructuring constitutes a centrosome-dependent process. Genetic analysis identifies a requirement for SCAR, a key mediator of Arp2/3-based microfilament dynamics, in organization of subcortical microfilament structures. Developmental Dynamics 236:662-670, 2007.