Appropriate cell-cell signaling is crucial for proper tissue homeostasis. Protein sorting of cell surface receptors at the early endosome is important for both the delivery of the signal and the inactivation of the receptor, and its alteration can cause malignancies including cancer. In a genetic screen for suppressors of the pro-apoptotic gene hid in Drosophila, we identified two alleles of vps25, a component of the ESCRT machinery required for protein sorting at the early endosome. Paradoxically, although vps25 mosaics were identified as suppressors of hid-induced apoptosis, vps25 mutant cells die. However, we provide evidence that a non-autonomous increase of Diap1 protein levels, an inhibitor of apoptosis, accounts for the suppression of hid. Furthermore, before they die, vps25 mutant clones trigger non-autonomous proliferation through a failure to downregulate Notch signaling, which activates the mitogenic JAK/STAT pathway. Hid and JNK contribute to apoptosis of vps25 mutant cells. Inhibition of cell death in vps25 clones causes dramatic overgrowth phenotypes. In addition, Hippo signaling is increased in vps25 clones, and hippo mutants block apoptosis in vps25 clones. In summary, the phenotypic analysis of vps25 mutants highlights the importance of receptor downregulation by endosomal protein sorting for appropriate tissue homeostasis, and may serve as a model for human cancer.
Numerous studies focus on the tumor suppressor p53 as a protector of genomic stability, mediator of cell cycle arrest and apoptosis, and target of mutation in 50% of all human cancers. The vast majority of information on p53, its protein-interaction partners and regulation, comes from studies of tumor-derived, cultured cells where p53 and its regulatory controls may be mutated or dysfunctional. To address regulation of endogenous p53 in normal cells, we created a mouse and stem cell model by knock-in (KI) of a tandem-affinity-purification (TAP) epitope at the endogenous Trp-53 locus. Mass spectrometry of TAP-purified p53-complexes from embryonic stem cells revealed Tripartite-motif protein 24 (Trim24), a previously unknown partner of p53. Mutation of TRIM24 homolog, bonus, in Drosophila led to apoptosis, which could be rescued by p53-depletion. These in vivo analyses establish TRIM24/bonus as a pathway that negatively regulates p53 in Drosophila. The Trim24-p53 link is evolutionarily conserved, as TRIM24 depletion in human breast cancer cells caused p53-dependent, spontaneous apoptosis. We found that Trim24 ubiquitylates and negatively regulates p53 levels, suggesting Trim24 as a therapeutic target to restore tumor suppression by p53.apoptosis ͉ bonus ͉ TAP ͉ ubiquitylation
The physical interaction of the plasma membrane with the associated cortical cytoskeleton is important in many morphogenetic processes during development. At the end of the syncytial blastoderm of Drosophila the plasma membrane begins to fold in and forms the furrow canals in a regular hexagonal pattern. Every furrow canal leads the invagination of membrane between adjacent nuclei. Concomitantly with furrow canal formation, actin filaments are assembled at the furrow canal. It is not known how the regular pattern of membrane invagination and the morphology of the furrow canal is determined and whether actin filaments are important for furrow canal formation. We show that both the guanyl-nucleotide exchange factor RhoGEF2 and the formin Diaphanous (Dia) are required for furrow canal formation. In embryos from RhoGEF2 or dia germline clones, furrow canals do not form at all or are considerably enlarged and contain cytoplasmic blebs. Both Dia and RhoGEF2 proteins are localised at the invagination site prior to formation of the furrow canal. Whereas they localise independently of F-actin, Dia localisation requires RhoGEF2. The amount of F-actin at the furrow canal is reduced in dia and RhoGEF2 mutants, suggesting that RhoGEF2 and Dia are necessary for the correct assembly of actin filaments at the forming furrow canal. Biochemical analysis shows that Rho1 interacts with both RhoGEF2 and Dia, and that Dia nucleates actin filaments. Our results support a model in which RhoGEF2 and dia control position, shape and stability of the forming furrow canal by spatially restricted assembly of actin filaments required for the proper infolding of the plasma membrane.
BackgroundGenetic studies in yeast have identified class E vps genes that form the ESCRT complexes required for protein sorting at the early endosome. In Drosophila, mutations of the ESCRT-II component vps25 cause endosomal defects leading to accumulation of Notch protein and increased Notch pathway activity. These endosomal and signaling defects are thought to account for several phenotypes. Depending on the developmental context, two different types of overgrowth can be detected. Tissue predominantly mutant for vps25 displays neoplastic tumor characteristics. In contrast, vps25 mutant clones in a wild-type background trigger hyperplastic overgrowth in a non-autonomous manner. In addition, vps25 mutant clones also promote apoptotic resistance in a non-autonomous manner.Principal FindingsHere, we genetically characterize the remaining ESCRT-II components vps22 and vps36. Like vps25, mutants of vps22 and vps36 display endosomal defects, accumulate Notch protein and – when the tissue is predominantly mutant – show neoplastic tumor characteristics. However, despite these common phenotypes, they have distinct non-autonomous phenotypes. While vps22 mutations cause strong non-autonomous overgrowth, they do not affect apoptotic resistance. In contrast, vps36 mutations increase apoptotic resistance, but have little effect on non-autonomous proliferation. Further characterization reveals that although all ESCRT-II mutants accumulate Notch protein, only vps22 and vps25 mutations trigger Notch activity.Conclusions/SignificanceThe ESCRT-II components vps22, vps25 and vps36 display common and distinct genetic properties. Our data redefine the role of Notch for hyperplastic and neoplastic overgrowth in these mutants. While Notch is required for hyperplastic growth, it appears to be dispensable for neoplastic transformation.
The Drosophila guanine nucleotide exchange factor Pebble (Pbl) is essential for cytokinesis and cell migration during gastrulation. In dividing cells, Pbl promotes Rho1 activation at the cell cortex, leading to formation of the contractile actin-myosin ring. The role of Pbl in fibroblast growth factor-triggered mesoderm spreading during gastrulation is less well understood and its targets and subcellular localization are unknown. To address these issues we performed a domain-function study in the embryo. We show that Pbl is localized to the nucleus and the cell cortex in migrating mesoderm cells and found that, in addition to the PH domain, the conserved C-terminal tail of the protein is crucial for cortical localization. Moreover, we show that the Rac pathway plays an essential role during mesoderm migration. Genetic and biochemical interactions indicate that during mesoderm migration, Pbl functions by activating a Rac-dependent pathway. Furthermore, gain-of-function and rescue experiments suggest an important regulatory role of the C-terminal tail of Pbl for the selective activation of Rho1-versus Rac-dependent pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.