Streamers are ionization waves in electric discharges. One of the key ingredients of streamer propagation is an ambient gas that serves as a source of free electrons. Here, we explore the dependence of streamer dynamics on different spatial distributions of ambient air molecules. We vary the spatial profile of air parallel and perpendicular to the ambient electric field. We consider local sinusoidal perturbations of 5%-100%, as induced from discharge shock waves. We use a cylindrically symmetric particle-in-cell code to simulate the evolution of bidirectional streamers and compare the electron density, electric field, streamer velocity and electron energy of streamers in uniform air and in perturbed air. In all considered cases, the motion is driven along in decreasing air density and damped along increasing air density. Perturbations of at most 5%-10% change the velocity differences by up to approximately 40%. Perturbations perpendicular to the electric field additionally squeeze or branch streamers. Air variations can thus partly explain the difference of velocities and morphologies of streamer discharges. In cases with large perturbations, electrons gain energies of up to 30 keV compared to 100 eV in uniformly distributed air. For such perturbations parallel to the ambient electric field, we see the spontaneous initiation of a negative streamer; for perpendicular perturbations, x-rays with energies of up to 20 keV are emitted within 0.17 ns.